

- Direct drive backlash free
- Nanometer resolution
- Simple drive electronics
- No power draw in hold position
- Quick response and high speed dynamics

The LL10 linear motor is intended for a large range of OEM applications. Design focus has been for ease of integration. The very high speed dynamics and nanometer resolution makes it ideal for numerous applications.

The Piezo LEGS technology is characterized by its outstanding precision. Fast speed and quick response time, as well as long service life are other benefits. In combination with the nanometer resolution the technology is quite unique.

The motor is ideally suited for move and hold applications or for automatic adjustments. When in hold position it does not consume any power. The drive technology is direct, meaning no gears or lead screws are needed to create linear motion. The motor has no mechanical play or backlash. The LL10 linear motor is available in a standard version, and in a non-magnetic vacuum version.

Mechanical connection

The motor is easily integrated in your application using the drive rod mechanical adapter. Drive rods are supplied in different lengths (30, 40, 50, 60, 70 and 101.8 mm).

Operating modes

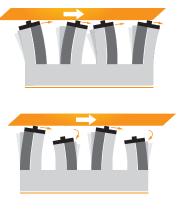
The motor can move in full steps (waveform-steps), or partial steps (microsteps) giving positioning resolution in the nanometer range. Speed is adjustable from single microsteps per second up to max specified.

Controlling the motor

PiezoMotor offers a range of drivers and controllers. The most basic one is a handheld push button driver. Another option is an analogue driver that regulates the motor speed by means of an ± 10 V analog interface. More advanced alternatives are microstep drivers/ controllers in the 100- and 200-series. These products allow for closed loop control and precise positioning. The microstepping feature divides the wfm-step into thousands of small increments which results in microsteps in the nanometer range. The PMD units are straight forward to use, supports quadrature and serial sensors, and have multiple I/O ports.

Design your own driver

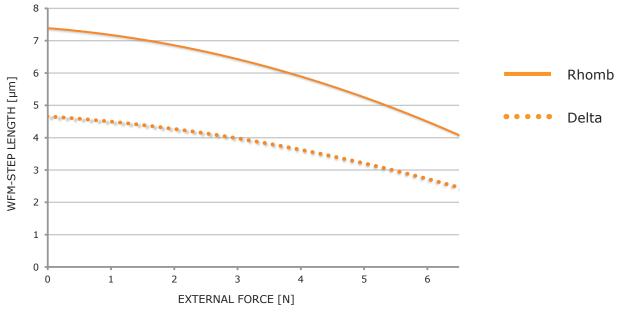
Some customers prefer to design their own driver for ease of integration. PiezoMotor provides information to assist in the design.


Ordering information			
Motors			
LL1011A-	Stainless Steel		
LL1011D-	Non-Magnetic Vacuum		
Drivers and Co	ntrollers		
PMCM21	Handheld push button driver		
PMCM31	Analogue driver		
PMD101	1-axis microstepping driver		
PMD206	6-axis microstepping driver		
PMD236	36-axis microstepping driver		
Linear Encoders			
See separerate data sheet			

The Piezo LEGS walking principle is of the non-resonant type, i.e. the position of the drive legs is known at any given moment. This assures very good control of the motion over the whole speed range.

The performance of a Piezo LEGS motor is different from that of a DC or stepper motor in several aspects. A Piezo LEGS motor is friction based, meaning the motion is transferred through contact friction between the drive leg and the drive rod. You cannot rely on each step being equal to the next. This is especially true if the motor is operated under varying loads, as shown in the diagram below. For each waveform cycle the Piezo LEGS motor will take one full step, referred to as one *wfm-step* (~7.5 µm at no load with waveform *Rhomb*). In the schematic illustrations to the right, you can see one step being completed. The velocity of the drive rod is wfm-step length multiplied with waveform frequency (7.5 µm x 2 kHz = 15 mm/s).

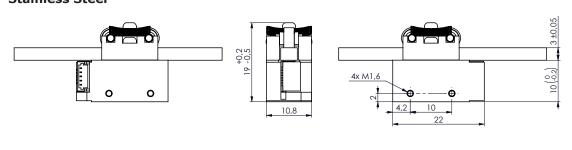
Microstepping is achieved by dividing the wfm-step into discrete points. The resolution will be a combination of the number of points in the waveform, and the load. Example: at 3 N load the typical wfm-step length with waveform *Delta* is ~4 μ m, and with 8192 discrete points in the waveform the microstep resolution will be ~0.5 nm.



1 When all four legs are electrically activated they are elongated and bending. As we shall see below, alternate legs move as pairs. Arrows show the direction of motion of the tip of each leg.

2 The first pair of legs maintains contact with the rod and moves towards the right. The second pair retracts and their tips begin to move left.

3 The second pair of legs has now extended and repositioned in contact with the rod. Their tips begin moving right. The first pair retracts and their tips begin to move left.


4 The second pair of legs has moved right. The first pair begins to elongate and move up towards the rod.

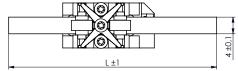
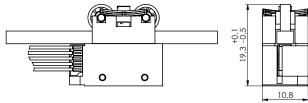
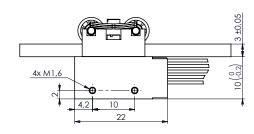


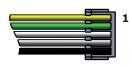
Figure 1 Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). Wfm-step length is the average distance the drive rod moves when the legs take one wfm-step (i.e. for one waveform cycle). Note: Standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.




Main Dimensions LL1011A Stainless Steel

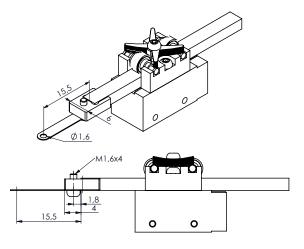
Main Dimensions LL1011D Non-Magnetic Vacuum

Note: Refer to drawings for details. Read *Installation Guidelines* carefully.

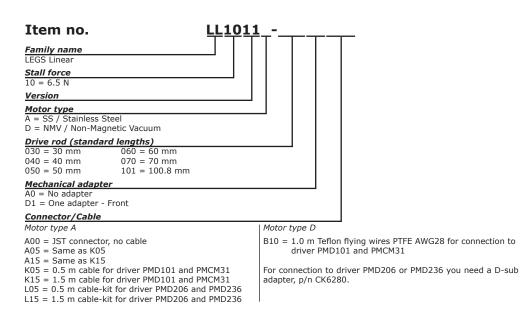


Electrical Connector Type

On motor type A (standard version) the connector is JST BM05B-SRSS-TB.


Motor type D (non-magnetic ,vacuum version) has a soldered cable with connector of type JST 05SR-3S.

Pin Assignment				
Pin	Terminal	Cable Color		
1	Phase 1	Yellow		
2	Phase 2	Green		
3	Phase 3	White		
4	Phase 4	Grey		
5	Ground (GND)	Black or brown		


Mechanical Connector Type

The drive rod can be fastened using a mechanical adapter with sheet metal extender. Please read *Installation Guidelines* carefully for notes on how to properly connect the Piezo LEGS motor. Disregarding the instructions given in the guideline document may impair both motor performance as well as life time.

Technical Specification						
Туре	LL1011A- stainless steel	LL1011D- n-m vacuum	Unit	Note		
Maximum Stroke	80 (L-20.8)	80 (L-20.8)	mm	100.8 mm rod, no mechanical adapter		
Speed Range ^a	0-15	0-15	mm/s	recommended, no load		
Step Length ^b	4	4	μm	one wfm-step		
Step Length	0.0005 °	0.0005 °	μm	one microstep ^c		
Resolution	< 1	< 1	nm	driver dependent		
Recommended Operating Range	0-3	0-3	Ν	for best microstepping performance and life time		
Stall Force	6.5	6.5	Ν			
Holding Force	7	7	Ν			
Vacuum	-	10 ⁻⁷	torr			
Maximum Voltage	48	48	V			
Power Consumption ^d	5	5	mW/Hz	=0.5 W at 100 Hz wfm-step frequency		
Connector	JST BM05B-SRSS-TB	soldered cable w. JST 05SR-3S				
Mechanical Size	22 x 19 x 10.8	22 x 19.3 x 10.8	mm	see drawing for details		
Material in Motor Housing	Stainless Steel	Non-Magnetic				
Weight	23	23	gram	approximate		
Operating Temp.	-20 to +70	-20 to +70	٥C			

a. Max value is typical for waveform *Rhomb* at 2 kHz, no load, temperature 20°C.
b. Typical values for waveform *Delta*, 3 N load, temperature 20°C.
c. Driver dependent; 8192 microsteps per wfm-step for driver in the PMD200-series.
d. At temperature 20°C, intermittent runs.

Visit our website for application examples, CAD files, videos and more...

www.piezomotor.com

PiezoMotor Uppsala AB Stålgatan 14 SE-754 50 Uppsala, Sweden

PiezoMotor

Note: All combinations are not possible!

Telephone: +46 18 489 5000 Fax: +46 18 489 5001

info@piezomotor.com www.piezomotor.com

Note: All specifications are subject to change without notice.

- Direct drive backlash free
- Nanometer resolution
- Simple drive electronics
- No power draw in hold position
- Quick response and high speed dynamics

The LT20 linear motor is intended for a large range of OEM applications. Design focus has been for ease of integration. The very high speed dynamics and nanometer resolution makes it ideal for numerous applications.

The Piezo LEGS technology is characterized by its outstanding precision. Fast speed and quick response time, as well as long service life are other benefits. In combination with the nanometer resolution the technology is quite unique.

The motor is ideally suited for move and hold applications or for automatic adjustments. When in hold position it does not consume any power. The drive technology is direct, meaning no gears or lead screws are needed to create linear motion. The motor has no mechanical play or backlash. The LT20 linear motor is available in standard version, vacuum version, and non-magnetic vacuum version.

Mechanical and electrical connection

The motor is easily integrated in your application using the drive rod mechanical adapter. Drive rods are supplied in different lengths (30, 40, 50, 60, 70 and 100.8 mm).

The motor has two electrical connectors which are connected in parallel to the driver.

Operating modes

The motor can move in full steps (waveform-steps), or partial steps (microsteps) giving positioning resolution in the nanometer range. Speed is adjustable from single microsteps per second up to max specified.

Controlling the motor

PiezoMotor offers a range of drivers and controllers. The most basic one is a handheld push button driver. Another option is an analogue driver that regulates the motor speed by means of an ± 10 V analog interface. More advanced alternatives are microstep drivers/ controllers in the 100- and 200-series. These products allow for closed loop control and precise positioning. The microstepping feature divides the wfm-step into thousands of small increments which results in microsteps in the nanometer range. The PMD units are straight forward to use, supports quadrature and serial sensors, and have multiple I/O ports.

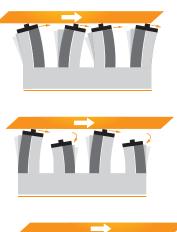
PMD101

PMD206

Design your own driver

Some customers prefer to design their own driver for ease of integration. PiezoMotor provides information to assist in the design.

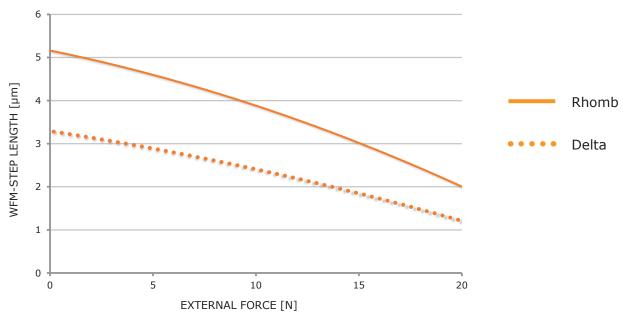
Ordering information				
Motor Types				
LT2010A-/20A-	Stainless steel			
LT2010B-/20B-	Stainless steel vacuum			
LT2010D-/20D-	Non-magnetic vacuum			
Drivers and Controllers				
PMCM21	Handheld push button driver			
PMCM31	Analogue driver			
PMD101	1-axis microstepping driver			
PMD206	6-axis microstepping driver			
PMD236	36-axis microstepping driver			
Linear Encoders				


See separerate data sheet

The Piezo LEGS walking principle is of the non-resonant type, i.e. the position of the drive legs is known at any given moment. This assures very good control of the motion over the whole speed range.

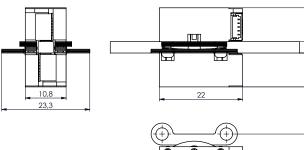
The performance of a Piezo LEGS motor is different from that of a DC or stepper motor in several aspects. A Piezo LEGS motor is friction based, meaning the motion is transferred through contact friction between the drive leg and the drive rod. You cannot rely on each step being equal to the next. This is especially true if the motor is operated under varying loads, as shown in the diagram below. For each waveform cycle the Piezo LEGS motor will take one full step, referred to as one *wfm-step* (~5 µm at no load with waveform *Rhomb*). In the schematic illustrations to the right, you can see one step being completed. The velocity of the drive rod is wfm-step length multiplied with waveform frequency (5 µm x 2 kHz = 10 mm/s).

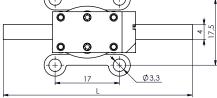
Microstepping is achieved by dividing the wfm-step into discrete points. The resolution will be a combination of the the number of points in the waveform, and the load. Example: at 10 N load the typical wfm-step length with waveform *Delta* is ~2.5 μ m, and with 8192 discrete points in the waveform the microstep resolution will be ~0.3 nm.

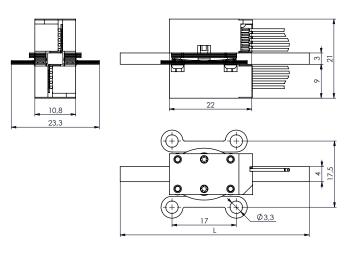


1 When all four legs are electrically activated they are elongated and bending. As we shall see below, alternate legs move as pairs. Arrows show the direction of motion of the tip of each leg.

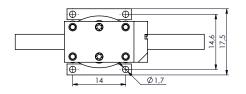
2 The first pair of legs maintains contact with the rod and moves towards the right. The second pair retracts and their tips begin to move left.


3 The second pair of legs has now extended and repositioned in contact with the rod. Their tips begin moving right. The first pair retracts and their tips begin to move left.

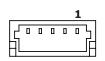

4 The second pair of legs has moved right. The first pair begins to elongate and move up towards the rod.


Figure 1 Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). Wfm-step length is the average distance the drive rod moves when the legs take one wfm-step (i.e. for one waveform cycle). Note: Standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.

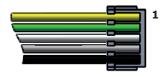
Main Dimensions LT2010 A Stainless Steel


Main Dimensions LT2010 B/D Stainless Steel Vacuum / Non-Magnetic Vacuum

Note: Refer to drawings for details. Read *Installation Guidelines* carefully.

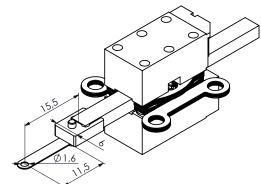

Mounting Options

There are two mounting options available, either for M3 screws (\emptyset 3.3 mm holes), as seen above, or a slim version for M1.6 screws (\emptyset 1.7 mm holes), see below.



Electrical Connector Types

On motor type LT2010A (standard version) there are two connectors of type JST BM05B-SRSS-TB.

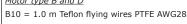


Motor type LT2010B (vacuum version) has soldered cables with two connectors of type JST 05SR-3S.

Pin Assignment				
Pin	Terminal	Cable Color		
1	Phase 1	Yellow		
2	Phase 2	Green		
3	Phase 3	White		
4	Phase 4	Grey		
5	Ground (GND)	Black or brown		

Mechanical Adapter

The drive rod can be fastened using a mechanical adapter with sheet metal extender. In this figure the adapter is mounted in front end of drive rod. Please read *Installation Guidelines* carefully for notes on how to properly connect the Piezo LEGS motor. Disregarding the instructions given in the guideline document may impair both motor performance as well as life time.


Piezo LEGS® Linear Twin 20N

Technical Specification LT20						
Туре	10A/20A stainless steel	10B/20B vacuum	10D/20D non-magnetic vac.	Unit	Note	
Maximum Stroke	80 (L-20.8)	80 (L-20.8)	80 (L-20.8)	mm	100.8 mm drive rod, no mechanical adapter	
Speed Range ^a	0-10	0-10	0-10	mm/s	recommended	
Step Length ^b	2.5	2.5	2.5	μm	one wfm-step	
Step Length	0.0003 ^c	0.0003 ^c	0.0003 ^c	μm	one microstep ^c	
Resolution	< 1	< 1	< 1	nm	driver dependent	
Recommended Operating Range	0-10	0-10	0-10	Ν	for best microstepping performance and life time	
Stall Force	20	20	20	Ν		
Holding Force	22	22	22	Ν		
Vacuum	-	10-7	10-7	torr		
Maximum Voltage	48	48	48	V		
Power Consumption ^d	10	10	10	mW/Hz	=1 W at 100 Hz wfm-step frequency	
Connector	2 x JST BM05B- SRSS-TB	soldered cable w. 2 x JST 05SR-3S	soldered cable w. 2 x JST 05SR-3S			
Mechanical Size	22 x 21 x 10.8	22 x 21 x 10.8	22 x 21 x 10.8	mm	see drawing for details	
Material in Motor Housing	Stainless Steel	Stainless Steel	Non-magnetic			
Weight	29	29	29	gram	approximate	
Operating Temp.	-20 to +70	-20 to +70	-20 to +70	٥C		

a. Max value is typical for waveform *Rhomb* at 2 kHz, no load, temperature 20°C.
b. Typical values for waveform *Delta*, 10 N load, temperature 20°C.
c. Driver dependent; 8192 microsteps per wfm-step for driver in the PMD200-series.
d. At temperature 20°C, intermittent runs.

Item no. LT20	
Family name LEGS Linear Twin	
Stall force 20 = 20 N	
Version 10 = mounts with M3 screws 20 = mounts with M1.6 screws	
Motor type A = SS / Stainless Steel B = SSV / Stainless Steel Vacuum D = NMV / Non-Magnetic Vacuum	
Drive rod (standard lengths) 030 = 30 mm 060 = 60 mm 040 = 40 mm 070 = 70 mm 050 = 50 mm 101 = 100.8 mm	
Mechanical adapter A0 = No adapter D1 = One adapter - Front D2 = One adapter - Back E1 = Two adapters - Front and back	
Connector/Cable Motor type A	Motor type B and D
A00 = JST connectors, no cables A05 = 0.5 m cables * A15 = 1.5 m cables * K05 = 0.5 m cable-kit for driver PMD101 and PMCM31 K15 = 1.5 m cable-kit for driver PMD101 and PMCM31 L05 = 0.5 m cable-kit for driver PMD206 and PMD236 L15 = 1.5 m cable-kit for driver PMD206 and PMD236	B10 = 1.0 m Teflon flyii For connection to driv need an additional cabl For connection to driv need a D-sub adapter, J
* = does not connect directly to either PM driver	

Note: All combinations are not possible!

ver PMD101 or PMCM31 you ble-kit, p/n CK6281.

ver PMD206 or PMD236 you p/n CK6280.

Visit our website for application examples, CAD files, videos and more...

www.piezomotor.com

PiezoMotor

PiezoMotor Uppsala AB Stålgatan 14 SE-754 50 Uppsala, Sweden Telephone: +46 18 489 5000 Fax: +46 18 489 5001

info@piezomotor.com www.piezomotor.com

Note: All specifications are subject to change without notice.

150020-05

- Direct drive backlash free
- Nanometer resolution
- **Optical mount interface**
- Quick response and high speed dynamics

The LTC20 enclosed linear motor is intended for use in a large range of applications; laser and optics applications, moving mirror mounts, replacement for micrometer screws etc. The very high speed dynamics and nanometer resolution makes it ideal for numerous applications.

The Piezo LEGS technology is characterized by its outstanding precision. Fast speed and quick response time, as well as long service life are other benefits. In combination with the nanometer resolution the technology is quite unique.

The motor is ideally suited for move and hold applications or for automatic adjustments. When in hold position it does not consume any power. The drive technology is direct, meaning no gears or lead screws are needed to create linear motion. The motor has no mechanical play or backlash. The LTC20 linear motor is available in two different mounting versions.

Operating modes

The motor can move in full steps (waveform-steps), or partial steps (microsteps) giving positioning resolution in the nanometer range. Speed is adjustable from single microsteps per second up to max specified.

Controlling the motor

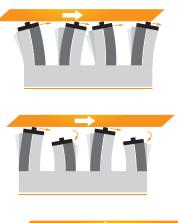
PiezoMotor offers a range of drivers and controllers. The most basic one is a handheld push button driver. Another option is an analogue driver that regulates the motor speed by means of an ± 10 V analog interface. More advanced alternatives are microstep drivers/ controllers in the 100- and 200-series. These products allow for closed loop control and precise positioning. The microstepping feature divides the wfm-step into thousands of small increments which results in microsteps in the nanometer range. The PMD units are straight forward to use, supports quadrature and serial sensors, and have multiple I/O ports.

PMD101

PMD206

Design your own driver

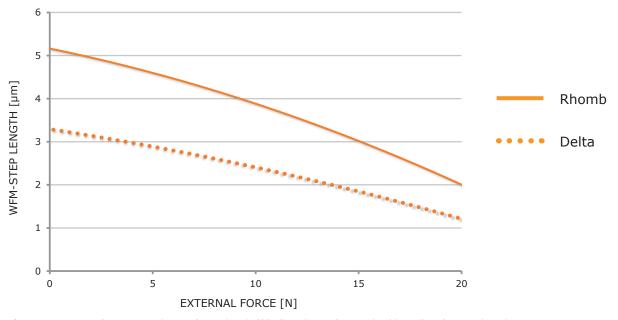
Some customers prefer to design their own driver for ease of integration. PiezoMotor provides information to assist in the design.


Ordering information					
Motors	Motors				
LTC2013-013	Clamp mount, shaft w. M2.5				
LTC2014-013	Nut mount, shaft w. M2.5				
Drivers and Controllers					
PMCM21	Handheld push button driver				
PMCM31	Analogue driver				
PMD101	1-axis microstepping driver				
PMD206	6-axis microstepping driver				
PMD236	36-axis microstepping driver				
Linear Encoders					
See separerate data sheet					

The Piezo LEGS walking principle is of the non-resonant type, i.e. the position of the drive legs is known at any given moment. This assures very good control of the motion over the whole speed range.

The performance of a Piezo LEGS motor is different from that of a DC or stepper motor in several aspects. A Piezo LEGS motor is friction based, meaning the motion is transferred through contact friction between the drive leg and the drive rod. You cannot rely on each step being equal to the next. This is especially true if the motor is operated under varying loads, as shown in the diagram below. For each waveform cycle the Piezo LEGS motor will take one full step, referred to as one *wfm-step* (~5 μ m at no load with waveform *Rhomb*). In the schematic illustrations to the right, you can see one step being completed. The velocity of the drive rod is wfm-step length multiplied with waveform frequency (5 μ m x 2 kHz = 10 mm/s).

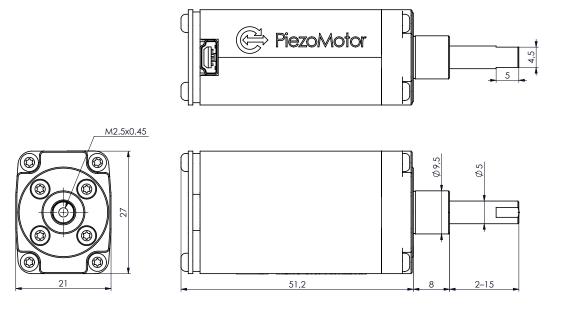
Microstepping is achieved by dividing the *wfm-step* into discrete points. The resolution will be a combination of the the number of points in the waveform, and the load. Example: at 10 N load the typical wfm-step length with waveform *Delta* is ~2.5 μ m, and with 8192 discrete points in the waveform the microstep resolution will be ~0.3 nm.

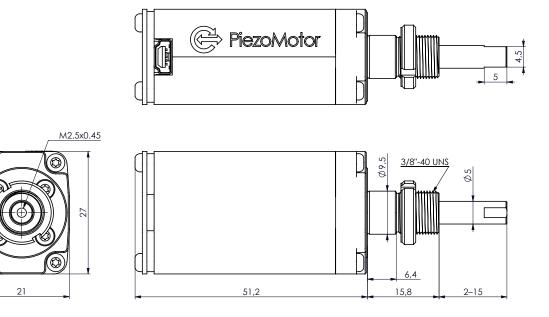


1 When all four legs are electrically activated they are elongated and bending. As we shall see below, alternate legs move as pairs. Arrows show the direction of motion of the tip of each leg.

2 The first pair of legs maintains contact with the rod and moves towards the right. The second pair retracts and their tips begin to move left.

3 The second pair of legs has now extended and repositioned in contact with the rod. Their tips begin moving right. The first pair retracts and their tips begin to move left.


4 The second pair of legs has moved right. The first pair begins to elongate and move up towards the rod.


Figure 1 Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). Wfm-step length is the average distance the drive rod moves when the legs take one wfm-step (i.e. for one waveform cycle). Note: Standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.

Main Dimensions LTC2013-013

Main Dimensions LTC2014-013

Note:

Refer to drawings for details. Drive shaft has only limited bending moment capability, and absolutely no rotational torque is allowed. In order to safely mount an endpiece in the threaded hole, you must first release the motor completely (it must not be fixed in position). Thereafter, hold on only to the flat part of the shaft and fasten endpiece tightly.

	Technical Specification						
Туре	LTC2013-013 (clamp mount)	LTC2014-013 (nut mount)	Unit	Note			
Stroke	12.8	12.8	mm				
Speed Range ^a	0-10	0-10	mm/s	recommended, no load			
Step Length ^b	2.5	2.5	μm	one wfm-step			
Step Length	0.0003 c	0.0003 c	μm	one microstep ^c			
Resolution	< 1	< 1	nm	driver dependent			
Recommended Operating Range	0-10	0-10	Ν	for best microstepping performance and life time			
Stall Force	20	20	Ν				
Holding Force	22	22	Ν				
Maximum Voltage	48	48	V				
Power Consumption ^d	10	10	mW/Hz	=1 W at 100 Hz wfm-step frequency			
Connector	USB mini-B	USB mini-B					
Mechanical Size	51.2 x 27 x 21	51.2 x 27 x 21	mm	see drawing for details			
Material in Motor Housing	Stainless Steel, Aluminum	Stainless Steel, Aluminum					
Mounting	Clamp	Nut					
Weight	95	95	gram	approximate			
Operating Temp.	0 to +50	٥C					
	Max value is typical for waveform <i>Rhomb</i> at 2 kHz, no load, temperature 20°C. Note: All specifications are subject to change without not						

a. Max value is typical for waveform *Rhomb* at 2 kHz, no load, temperature 20°C.
b. Typical values for waveform *Delta*, 10 N load, temperature 20°C.
c. Driver dependent; 8192 microsteps per wfm-step for driver in the PMD200-series.

d. At temperature 20°C, intermittent runs.

Connector Type

The motor connector is USB mini-B. Motor cable is included (2 m with USB mini-B to JST 05SR-3S). Cable connects directly to driver PMD101 and PMCM31. For connection to driver PMD206 and PMD236 you also need a D-sub adapter (p/n CK6280).

Pin Assignment					
Pin	Terminal	Cable Color			
1	Ground (GND)	Black or brown			
2	Phase 4	Grey			
3	Phase 3	White			
4	Phase 2	Green			
5	Phase 1	Yellow			

Visit our website for application examples, CAD files, videos and more...

www.piezomotor.com

PiezoMotor Uppsala AB Stålgatan 14 SE-754 50 Uppsala, Sweden Telephone: +46 18 489 5000 Fax: +46 18 489 5001

info@piezomotor.com www.piezomotor.com

- For stage integration
- Direct drive backlash free
- Nanometer resolution
- Simple drive electronics
- Quick response and high speed dynamics

The LC20 motor is intended for motorizing linear stages or goniometer stages. It is miniaturized to such a degree it will fit within the stage block. Manufacturers can with the Caliper motor reach new degrees of miniaturization in stage motorization. The very high speed dynamics and nanometer resolution makes it ideal for motorized stages.

The Piezo LEGS technology is characterized by its outstanding precision. Fast speed and quick response time, as well as long service life are other benefits. In combination with the nanometer resolution the technology is quite unique.

When the motor is in hold position it does not consume any power. The drive technology is direct, meaning no gears or lead screws are needed to create linear motion. The motor has no mechanical play or backlash.

Operating modes

The motor can move in full steps (waveform-steps), or partial steps (microsteps) giving positioning resolution in the nanometer range. Speed is adjustable from single microsteps per second up to max specified.

Controlling the motor

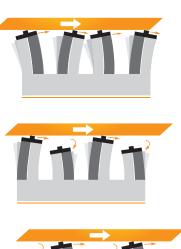
PiezoMotor offers a range of drivers and controllers. The most basic one is a handheld push button driver. Another option is an analogue driver that regulates the motor speed by means of an ± 10 V analog interface. More advanced alternatives are microstep drivers/ controllers in the 100- and 200-series. These products allow for closed loop control and precise positioning. The microstepping feature divides the wfm-step into thousands of small increments which results in microsteps in the nanometer range. The PMD units are straight forward to use, supports quadrature and serial sensors, and have multiple I/O ports.

PMD101

PMD206

Design your own driver

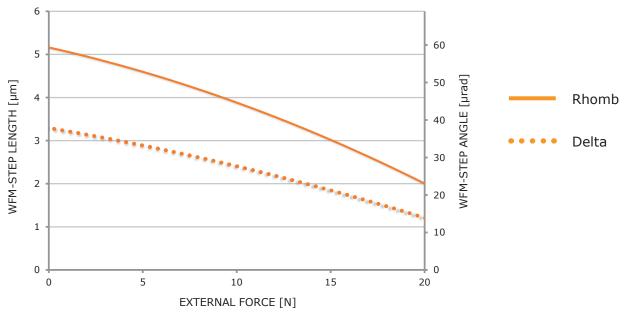
Some customers prefer to design their own driver for ease of integration. PiezoMotor provides information to assist in the design.


Ordering information			
Motors			
LC2010	Motor for goniometer stage		
LC2020	Motor for linear stage		
Drivers and Controllers			
PMCM21	Handheld push button driver		
PMCM31	Analogue driver		
PMD101	1-axis microstepping driver		
PMD206	6-axis microstepping driver		
PMD236	36-axis microstepping driver		
Linear Encoders			
See separerate data sheet			

The Piezo LEGS walking principle is of the non-resonant type, i.e. the position of the drive legs is known at any given moment. This assures very good control of the motion over the whole speed range.

The performance of a Piezo LEGS motor is different from that of a DC or stepper motor in several aspects. A Piezo LEGS motor is friction based, meaning the motion is transferred through contact friction between the drive leg and the drive rod. You cannot rely on each step being equal to the next. This is especially true if the motor is operated under varying loads, as shown in the diagram below. For each waveform cycle the Piezo LEGS motor will take one full step, referred to as one *wfm-step* (~5 µm at no load with waveform *Rhomb*). In the schematic illustrations to the right, you can see one step being completed. The velocity of the drive rod is wfm-step length multiplied with waveform frequency (5 µm x 2 kHz = 10 mm/s).

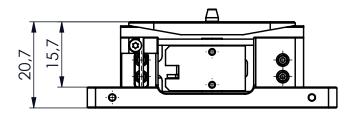
Microstepping is achieved by dividing the *wfm-step* into discrete points. The resolution will be a combination of the number of points in the waveform, and the load. Example: at 10 N load the typical wfm-step length with waveform *Delta* is ~2.5 μ m, and with 8192 discrete points in the waveform the microstep resolution will be ~0.3 nm.

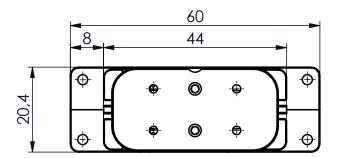


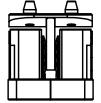
1 When all four legs are electrically activated they are elongated and bending. As we shall see below, alternate legs move as pairs. Arrows show the direction of motion of the tip of each leg.

2 The first pair of legs maintains contact with the rod and moves towards the right. The second pair retracts and their tips begin to move left.

3 The second pair of legs has now extended and repositioned in contact with the rod. Their tips begin moving right. The first pair retracts and their tips begin to move left.


4 The second pair of legs has moved right. The first pair begins to elongate and move up towards the rod.




Figure 1 Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). Wfm-step length/angle is the average distance the drive rod moves when the legs take one wfm-step (i.e. for one waveform cycle). Note: Standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.

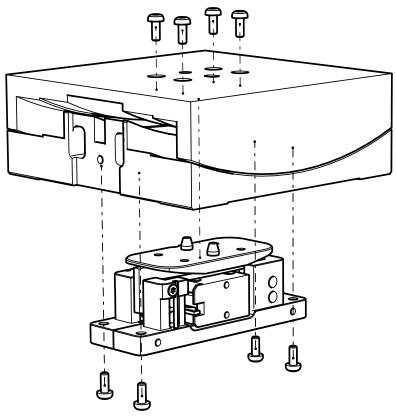
Main Dimensions LC20

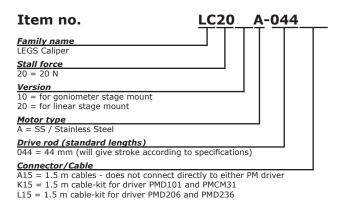
Note: All specifications are subject to change without notice. Detailed drawings can be found in the document *Installation Guidelines for the Piezo LEGS Caliper.*

Installation

The Piezo LEGS Caliper is designed for stage integration. It is miniaturized to a degree where it will fit inside a linear stage or a goniometer stage (figure 2). The motor is easily mounted in the stage blocks using eight screws. No further adjustments have to be made. Please look at the document *Installation Guidelines for the Piezo LEGS Caliper* for information on how to design the stage blocks and how to correctly mount the motor. The guideline document also has more detailed drawings of the motor.

The PiezoMotor staff will be happy to assist you with details on system integration and can provide mechanical engineering expertise. On our webpage you can find CAD files for download (motor units and mock-up stages).




Figure 2 Example of Caliper motor integration in a 70x70 mm goniometer stage.

Piezo LEGS[®] Caliper 20N

Technical Specification						
Туре	LC2010 (for gonio stage)	LC2020 (for linear stage)	Note			
Stroke	±10° ª	29 mm				
Minimum Radius	86 mm	-	see installation guidelines			
Speed Range ^b	0-7 ⁰ /s ^a	0-10 mm/s	recommended, no load			
Step Angle/Length ^c	30 µrad ª	2.5 µm	one wfm-step			
Step Angle/ Length	0.004 µrad ^{a d}	0.0003 µm d	one microstep ^d			
Resolution	< 10 nrad ^a	< 1 nm	driver dependent			
Recommended Operating Range	0-10 N	0-10 N	for best microstepping performance and life time			
Stall Force	20 N	20 N				
Holding Force	22 N	22 N				
Maximum Voltage	48 V	48 V				
Power Consumption $^{\rm e}$	10 mW/Hz	10 mW/Hz	=1 W at 100 Hz wfm-step frequency			
Connector	2 x soldered cable with JST 05SR-3S	2 x soldered cable with JST 05SR-3S				
Mechanical Size	60 x 20.7 x 20.4 mm	60 x 20.7 x 20.4 mm	see drawing for details			
Material in Motor Housing	Stainless Steel, Aluminum	Stainless Steel, Aluminum				
Weight	110 grams	110 grams				
Operating Temp.	0 to +50 °C	0 to +50 °C				

a. Value is valid for minimum radius 86 mm.
b. Max value is typical for waveform *Rhomb* at 2 kHz, no load, temperature 20°C.
c. Typical values for waveform *Delta*, 10 N load, temperature 20°C.
d. Driver dependent; 8192 microsteps per wfm-step for driver in the PMD200-series.

e. At temperature 20°C, intermittent runs.

Electrical Connector Type

The motor is fitted with two cables with JST 05SR-3S connectors on the end. The cables need to be connected in parallell to the driver.

Note: All specifications are subject to change without notice.

Pin Assignment			
Pin	Terminal	Cable Color	
1	Phase 1	Yellow	
2	Phase 2	Green	
3	Phase 3	White	
4	Phase 4	Grey	
5	Ground (GND)	Black or brown	

Visit our website for application examples, CAD files, videos and more...

www.piezomotor.com

PiezoMotor Uppsala AB Stålgatan 14 SE-754 50 Uppsala, Sweden Telephone: +46 18 489 5000 Fax: +46 18 489 5001

info@piezomotor.com www.piezomotor.com

- Direct drive backlash free
- Nanometer resolution
- Quick response
- Optical mount interface

The LTC40 linear motor is intended for use in a large range of applications; laser and optics applications, moving mirror mounts, replacement for micrometer screws etc. The very high speed dynamics and nanometer resolution makes it ideal for numerous applications.

The Piezo LEGS technology is characterized by its outstanding precision. Fast speed and quick response time, as well as long service life are other benefits. In combination with the nanometer resolution the technology is quite unique.

The motor is ideally suited for move and hold applications or for automatic adjustments. When in hold position it does not consume any power. The drive technology is direct, meaning no gears or lead screws are needed to create linear motion. The motor has no mechanical play or backlash. The LTC40 linear motor is available with a few different mounting options - clamp, nut, or flange.

Operating modes

The motor can move in full steps (waveform-steps), or partial steps (microsteps) giving positioning resolution in the nanometer range. Speed is adjustable from single microsteps per second up to max specified.

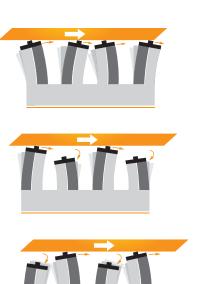
Controlling the motor

PiezoMotor offers a range of drivers and controllers. The most basic one is a handheld push button driver. Another option is an analogue driver that regulates the motor speed by means of an ± 10 V analog interface. More advanced alternatives are microstep drivers/ controllers in the 100- and 200-series. These products allow for closed loop control and precise positioning. The microstepping feature divides the wfm-step into thousands of small increments which results in microsteps in the nanometer range. The PMD units are straight forward to use, supports quadrature and serial sensors, and have multiple I/O ports.

Design your own driver

Some customers prefer to design their own driver for ease of integration. PiezoMotor provides information to assist in the design.

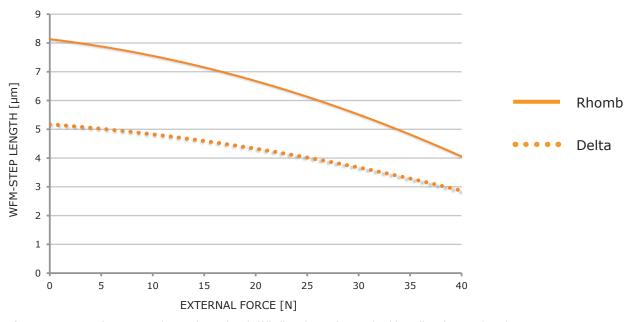
Ordering information			
Motors			
LTC4012-013	Clamp mount, shaft with ball tip		
LTC4013-013	Clamp mount, shaft with M2.5		
LTC4014-013	Nut mount, shaft with M2.5		
LTC4016-013	Flange mount, shaft with M2.5		
Drivers and Controllers			
PMCM21	Handheld push button driver		
PMCM31	Analogue driver		
PMD101	1-axis microstepping driver		
PMD206	6-axis microstepping driver		
PMD236 36-axis microstepping driver			
Linear Encoders			
Soo congrata data chaot			

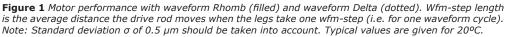

See separerate data sheet

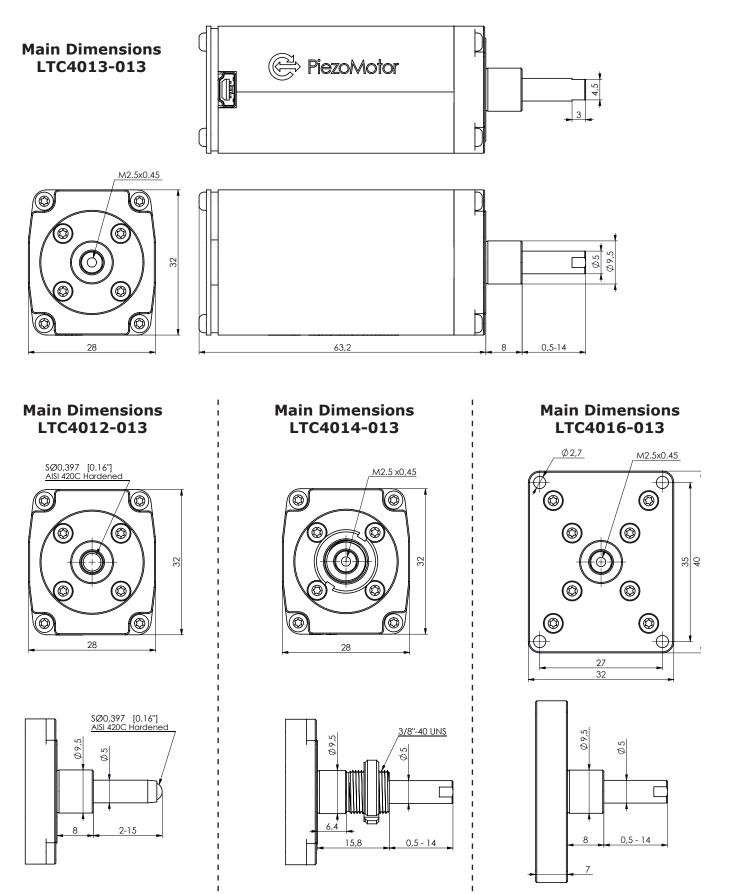
The Piezo LEGS walking principle is of the non-resonant type, i.e. the position of the drive legs is known at any given moment. This assures very good control of the motion over the whole speed range.

The performance of a Piezo LEGS motor is different from that of a DC or stepper motor in several aspects. A Piezo LEGS motor is friction based, meaning the motion is transferred through contact friction between the drive leg and the drive rod. You cannot rely on each step being equal to the next. This is especially true if the motor is operated under varying loads, as shown in the diagram below. For each waveform cycle the Piezo LEGS motor will take one full step, referred to as one *wfm-step* (~8 µm at no load with waveform *Rhomb*). In the schematic illustrations to the right, you can see one step being completed. The velocity of the drive rod is wfm-step length multiplied with waveform frequency (8 µm x 2 kHz = 16 mm/s).

Microstepping is achieved by dividing the wfm-step into discrete points. The resolution will be a combination of the the number of points in the waveform, and the load. Example: at 20 N load the typical wfm-step length with waveform *Delta* is ~4.5 μ m, and with 8192 discrete points in the waveform the microstep resolution will be ~0.5 nm.




1 When all four legs are electrically activated they are elongated and bending. As we shall see below, alternate legs move as pairs. Arrows show the direction of motion of the tip of each leg.


2 The first pair of legs maintains contact with the rod and moves towards the right. The second pair retracts and their tips begin to move left.

3 The second pair of legs has now extended and repositioned in contact with the rod. Their tips begin moving right. The first pair retracts and their tips begin to move left.

4 The second pair of legs has moved right. The first pair begins to elongate and move up towards the rod.

Note:

Refer to drawings for details. Drive shaft has only limited bending moment capability, and absolutely no rotational torque is allowed. In order to safely mount an endpiece in the threaded hole, you must first release the motor completely (it must not be fixed in position). Thereafter, hold on only to the flat part of the shaft and fasten endpiece tightly.

Piezo LEGS® Linear Twin-C 40N

Technical Specification			
Туре	LTC40	Unit	Note
Minimum Stroke	12.8	mm	
Speed Range ^a	0-16	mm/s	recommended, no load
Step Length ^b	4.5	μm	one wfm-step
Step Length	0.0005 °	μm	one microstep ^c
Resolution	< 1	nm	driver dependent
Recommended Operating Range	0-20	Ν	for best microstepping performance and life time
Stall Force	40	Ν	
Holding Force	44	Ν	
Maximum Voltage	48	V	
Power Consumption ^d	10	mW/Hz	=2 W at 100 Hz wfm-step frequency
Connector	USB mini-B		
Mechanical Size	63.2 x 32 x 28	mm	see drawing for details
Material in Motor Housing	Stainless Steel, Aluminum		
Weight	165	gram	approximate
Operating Temp.	0 to +50	٥C	
Versions	LTC4012-013	LTC4013-013	LTC4014-013 LTC4016-013
	Se De	A CON	

a. Max value is typical for waveform *Rhomb* at 2 kHz, no load, temperature 20°C.
 b. Typical value for waveform *Delta*, 20 N load, temperature 20°C.

d. At temperature 20°C, intermittent runs.

Note: All specifications are subject to change without notice.

Connector Type

The motor connector is USB mini-B. Motor cable is included (2 m with USB mini-B to JST 05SR-3S). Cable connects directly to driver PMD101 and PMCM31. For connection to driver PMD206 and PMD236 you also need a D-sub adapter (p/n CK6280).

Pin Assignment			
Terminal	Cable Color		
Ground (GND)	Black or brown		
Phase 4	Grey		
Phase 3	White		
Phase 2	Green		
Phase 1	Yellow		
	Terminal Ground (GND) Phase 4 Phase 3 Phase 2		

Visit our website for application examples, CAD files, videos and more...

www.piezomotor.com

PiezoMotor Uppsala AB Stålgatan 14 SE-754 50 Uppsala, Sweden

PiezoMotor

Telephone: +46 18 489 5000 Fax: +46 18 489 5001

info@piezomotor.com www.piezomotor.com

- Direct drive backlash free
- Nanometer resolution
- No power draw in hold position
- Quick response
- Heavy loads

The LTC300 motor is intended for high force and precision applications. This includes applications in vacuum for the semiconductor industry. The advantage of using the Piezo LEGS technology is the very precise positioning resolution, as well as automatic locking giving true set-and-forget performance. The technology is based on direct drive without any backlash.

The Piezo LEGS technology is characterized by its outstanding precision. Quick response time, as well as long service life are other benefits. In combination with the nanometer or even sub-nanometer resolution the technology is quite unique.

Operating modes

The motor can move in full steps (waveform-steps), or partial steps (microsteps) giving positioning resolution in the nanometer range. Speed is adjustable from single microsteps per second up to max specified.

Controlling the motor

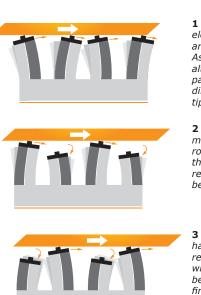
PiezoMotor offers a range of drivers and controllers. The more advanced alternatives are the microstep drivers/ controllers in the 100- and 200-series. These products allow for closed loop control and precise positioning. The microstepping feature divides the wfm-step into thousands of small increments which results in microsteps in the nanometer range. The PMD units are straight forward to use, supports quadrature and serial sensors, and have multiple I/O ports.

PMD101

PMD206

Design your own driver

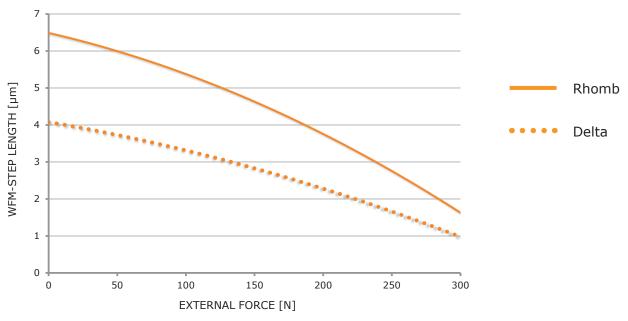
Some customers prefer to design their own driver for ease of integration. PiezoMotor provides information to assist in the design.


Ordering information				
Motor				
LTC30011-020	Standard version			
Drivers and Controllers				
PMD101	1-axis microstepping driver			
PMD206	6-axis microstepping driver			
PMD236 36-axis microstepping driver				
Linear Encoders				
See separerate data sheet				

The Piezo LEGS walking principle is of the non-resonant type, i.e. the position of the drive legs is known at any given moment. This assures very good control of the motion over the whole speed range.

The performance of a Piezo LEGS motor is different from that of a DC or stepper motor in several aspects. A Piezo LEGS motor is friction based, meaning the motion is transferred through contact friction between the drive leg and the drive rod. You cannot rely on each step being equal to the next. This is especially true if the motor is operated under varying loads, as shown in the diagram below. For each waveform cycle the Piezo LEGS motor will take one full step, referred to as one *wfm-step* (~6.5 µm at no load with waveform *Rhomb*). In the schematic illustrations to the right, you can see one step being completed. The velocity of the drive rod is wfm-step length multiplied with waveform frequency (6.5 µm x 50 Hz = 0.3 mm/s).

Microstepping is achieved by dividing the *wfm-step* into discrete points. The resolution will be a combination of the resolution of the D/A converter, the number of points in the waveform, and the load. Example: at 150 N load the wfm-step length with waveform *Delta* is \sim 3 µm, and with 8192 discrete points in the waveform the microstep resolution will be \sim 0.4 nm.



1 When all four legs are electrically activated they are elongated and bending. As we shall see below, alternate legs move as pairs. Arrows show the direction of motion of the tip of each leg.

2 The first pair of legs maintains contact with the rod and moves towards the right. The second pair retracts and their tips begin to move left.

3 The second pair of legs has now extended and repositioned in contact with the rod. Their tips begin moving right. The first pair retracts and their tips begin to move left.

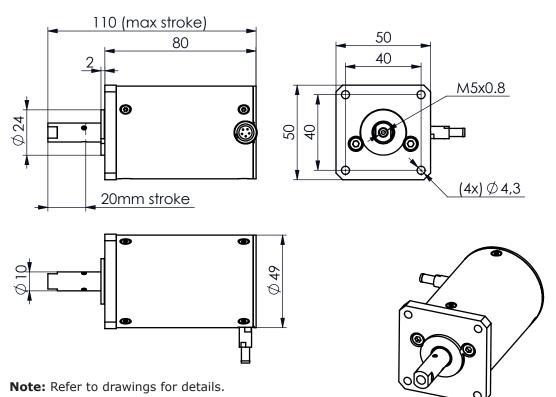

4 The second pair of legs has moved right. The first pair begins to elongate and move up towards the rod.

Figure 1 Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). Wfm-step length is the average distance the drive rod moves when the legs take one wfm-step (i.e. for one waveform cycle). Note: Standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.

Main Dimensions LTC30011-020 Standard version

PiezoMotor

Electrical Connector Type

Motor has multiple options for connectors depending on customer requirements. Options include LEMO connector, JST connector, or conventional D-sub type connector.

Technical Specification			
LTC30011-020 (standard version)	Unit	Note	
20	mm		
0-0.3	mm/s	recommended, no load	
3	μm	one wfm-step	
0.0004 ^c	μm	one microstep ^c	
< 1	nm	driver dependent	
0-150	Ν	for best microstepping performance and life time	
300	Ν		
> 300	Ν		
48	V		
0.2	W/Hz	= 10 W at 50 Hz wfm-step frequency	
On request			
80 x 50 x 50	mm	see drawing for details	
Stainless Steel			
955	gram	approximate	
+10 to +70	٥C		
	LTC30011-020 (standard version) 20 0-0.3 3 0.0004 ° < 1 0-150 300 > 300 48 0.2 On request 80 x 50 x 50 Stainless Steel 955	LTC30011-020 (standard version) Unit 20 mm 0-0.3 mm/s 3 µm 0.0004 ° µm <1 nm 0-150 N 300 N >300 N <300 N <300 N <300 N <300 N 300 MM MM	

a. Max value is typical for waveform *Rhomb* at 50 Hz, no load, temperature 20°C.
b. Typical value for waveform *Delta*, 150 N load, temperature 20°C.
c. Driver dependent; 8192 microsteps per wfm-step for driver in the PMD200-series.
d. At temperature 20°C, intermittent runs.

Visit our website for application examples, CAD files, videos and more...

www.piezomotor.com

PiezoMotor Uppsala AB Stålgatan 14 SE-754 50 Uppsala, Sweden Telephone: +46 18 489 5000 Fax: +46 18 489 5001

info@piezomotor.com www.piezomotor.com

Note: All specifications are subject to change without notice.

- Direct drive backlash free
- Nanometer resolution
- No power draw in hold position
- Quick response
- Heavy loads

The LTC450 motor is intended for high force and precision applications. This includes applications in vacuum for the semiconductor industry. The advantage of using the Piezo LEGS technology is the very precise positioning resolution, as well as automatic locking giving true setand-forget performance. The technology is based on direct drive without any backlash.

The Piezo LEGS technology is characterized by its outstanding precision. Quick response time, as well as long service life are other benefits. In combination with the nanometer or even sub-nanometer resolution the technology is quite unique.

Operating modes

The motor can move in full steps (waveform-steps), or partial steps (microsteps) giving positioning resolution in the nanometer range. Speed is adjustable from single microsteps per second up to max specified.

Controlling the motor

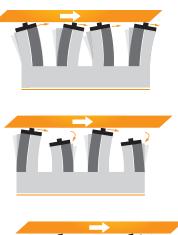
PiezoMotor offers a range of drivers and controllers. The more advanced alternatives are the microstep drivers/ controllers in the 100- and 200-series. These products allow for closed loop control and precise positioning. The microstepping feature divides the wfm-step into thousands of small increments which results in microsteps in the nanometer range. The PMD units are straight forward to use, supports quadrature and serial sensors, and have multiple I/O ports.

PMD101

PMD206

Design your own driver

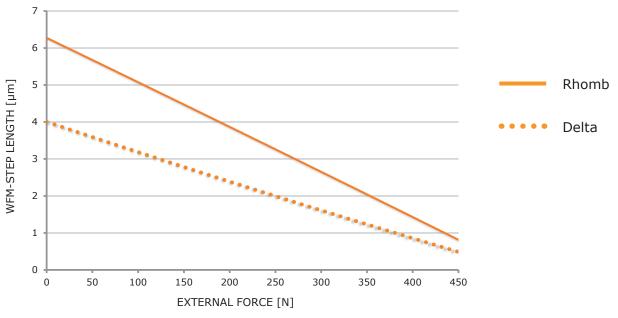
Some customers prefer to design their own driver for ease of integration. In this case PiezoMotor can provide information to assist in the design.


Ordering information				
Motor				
LTC45011-020	Standard version			
Drivers and Controllers				
PMD101	1-axis microstepping driver			
PMD206	6-axis microstepping driver			
PMD236	PMD236 36-axis microstepping driver			
Linear Encoders				
See separerate data sheet				

The Piezo LEGS walking principle is of the non-resonant type, i.e. the position of the drive legs is known at any given moment. This assures very good control of the motion over the whole speed range.

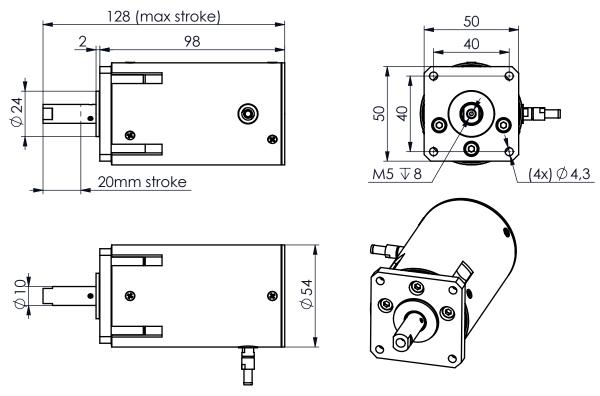
The performance of a Piezo LEGS motor is different from that of a DC or stepper motor in several aspects. A Piezo LEGS motor is friction based, meaning the motion is transferred through contact friction between the drive leg and the drive rod. You cannot rely on each step being equal to the next. This is especially true if the motor is operated under varying loads, as shown in the diagram below. For each waveform cycle the Piezo LEGS motor will take one full step, referred to as one *wfm-step* (~6.5 µm at no load with waveform *Rhomb*). In the schematic illustrations to the right, you can see one step being completed. The velocity of the drive rod is wfm-step length multiplied with waveform frequency (6.5 µm x 50 Hz = 0.3 mm/s).

Microstepping is achieved by dividing the *wfm-step* into discrete points. The resolution will be a combination of the resolution of the D/A converter, the number of points in the waveform, and the load. Example: at 225 N load the wfm-step length with waveform *Delta* is ~2 μ m, and with 8192 discrete points in the waveform the microstep resolution will be ~0.2 nm.



1 When all four legs are electrically activated they are elongated and bending. As we shall see below, alternate legs move as pairs. Arrows show the direction of motion of the tip of each leg.

2 The first pair of legs maintains contact with the rod and moves towards the right. The second pair retracts and their tips begin to move left.


3 The second pair of legs has now extended and repositioned in contact with the rod. Their tips begin moving right. The first pair retracts and their tips begin to move left.

4 The second pair of legs has moved right. The first pair begins to elongate and move up towards the rod.

Figure 1 Motor performance with waveform Rhomb (filled) and waveform Delta (dotted). Wfm-step length is the average distance the drive rod moves when the legs take one wfm-step (i.e. for one waveform cycle). Note: Standard deviation σ of 0.5 μ m should be taken into account. Typical values are given for 20°C.

Main Dimensions LTC45011-020 Standard version

Note: Refer to drawings for details.

Electrical Connector Type

Motor has multiple options for connectors depending on customer requirements. Options include LEMO connector, JST connector, or conventional D-sub type connector.

Technical Specification			
Туре	LTC45011-020 (standard version)	Unit	Note
Maximum Stroke	20	mm	
Speed Range ^a	0-0.3	mm/s	recommended, no load
Step Length ^b	2	μm	one wfm-step
Step Length	0.0002 c	μm	one microstep ^c
Resolution	< 1	nm	driver dependent
Recommended Operating Range	0-225	Ν	for best microstepping performance and life time
Stall Force	450	Ν	
Holding Force	> 450	Ν	
Maximum Voltage	48	V	
Power Consumption ^d	0.3	W/Hz	= 15 W at 50 Hz wfm-step frequency
Connector	On request		
Mechanical Size	98 x 50 x 50	mm	see drawing for details
Material in Motor Housing	Stainless Steel		
Weight	1060	gram	approximate
Operating Temperature	+10 to +70	٥C	
a. Max value is typical for waveform <i>Rhomb</i> at 50 Hz, no load, temperature 20°C. Note: All specifications are subject to change without notice			

a. Max value is typical for waveform *Rhomb* at 50 Hz, no load, temperature 20°C.
b. Typical value for waveform *Delta*, 225 N load, temperature 20°C.
c. Driver dependent; 8192 microsteps per wfm-step for driver in the PMD200-series.
d. At temperature 20°C, intermittent runs.

Visit our website for application examples, CAD files, videos and more...

www.piezomotor.com

PiezoMotor Uppsala AB Stålgatan 14 SE-754 50 Uppsala, Sweden Telephone: +46 18 489 5000 Fax: +46 18 489 5001

info@piezomotor.com www.piezomotor.com

