FAULHABER

Encoders

optical Encoder, digital outputs, 2 channels, 50 lines per revolution

For combination with
DC-Micromotors
Brushless DC-Motors

Series PA2-50

		PA2-50	
Lines per revolution	N	50	
Frequency range, up to ${ }^{1)}$	f	35	kHz
Signal output, square wave		2	Channels
Supply voltage	UDD	2,7 ... 3,3	V
Current consumption, typical ${ }^{2)}$	IDD	8,5	mA
Output current, max.	lout	8	mA
Pulse width	P	180 ± 50	${ }^{\circ} \mathrm{e}$
Phase shift, channel A to B	Φ	90 ± 45	${ }^{\circ} \mathrm{e}$
Logic state width	5	90 ± 50	${ }^{\circ} \mathrm{e}$
Cycle	C	360 ± 36	${ }^{\circ} \mathrm{e}$
Signal rise/fall time, max. (Cload $^{\text {a }} 25 \mathrm{pF}$)	$t r / t f$	0,3/0,1	$\mu \mathrm{s}$
Inertia of code disc	J	0,02	$\mathrm{gcm}{ }^{2}$
Operating temperature range		-30 ... +85	${ }^{\circ} \mathrm{C}$

1) Velocity $\left(\mathrm{min}^{-1}\right)=f(\mathrm{~Hz}) \times 60 / \mathrm{N}$
2) $U D D=3 \mathrm{~V}$: with unloaded outputs

Characteristics

These incremental shaft encoders in combination with the DC Micromotors and Brushless DC-Servomotors are designed for both indication and control of both shaft velocity and direction of rotation as well as for positioning.

An all-in-one emitter and detector chip transmits and receives LED light reflected off a low inertia reflective disc providing two channels with 90° phase shift.

The supply voltage for the encoder and the Micromotor as well as the output signals are interfaced with a flexible printed circuit (FPC).

Details for the DC-Micromotors and Brushless DC-Servomotors and suitable reduction gearheads are on separate catalog pages.

An optional interface board with suitable connector is also available on request.

Circuit diagram / Output signals

Output circuit

Output signals
with clockwise rotation as seen
from the shaft end

Rotation
0615 ... S / 0620 ... B
Channel B Leads channel A

Connection Encoder

Recommended connector
Molex 52745
grid $0,5 \mathrm{~mm}$
FPC / FFC, 6-conductors

Full product description

Examples:
0615N003S-K1655 PA2-50
0620K012B-K1719 PA2-50

Dimensional drawing A

Dimensional drawing B

PA2-50
Adapter board

Interface Board PA2-50
for Motion Controller MCDC 3002 S
Part. No.: 6501.00144

Connection

Pin	Connection X1	Pin	Connection X3
1	4. In	1	5. In
2	Channel A	2	4. In
3	Channel B		
4	UDD $=5 \mathrm{~V}$	Pin	Connection X4
5	SGND	1	Motor +
6	Motor +	2	Motor +
7	Motor -	3	UDD $=3,3 \mathrm{~V}$
8	5. In	4	Channel A
Pin	Connection X2	5	Channel B
1	Motor +	6	SGND
2	UDD $=3,3$ V	7	Motor -
3	Channel A	8	Motor -
4	Channel B		
5	SGND		
6	Motor -		

Interface board PA2-50
Part No.: D100315100

Connector

J1 - Solder Pads
J2 - Molex 52745-0696

Encoders

optical Encoder, digital outputs,
For combination with 2 channels, 100 lines per revolution

DC-Micromotors

Characteristics

These incremental shaft encoders in combination with the DCMicromotors are designed for both indication and control of both shaft velocity and direction of rotation as well as for positioning.

An all-in-one emitter and detector chip transmits and receives LED light reflected off a low inertia reflective disc providing two channels with 90° phase shift.

The supply voltage for the encoder and the Micromotor as well as the output signals are interfaced with a flexible printed circuit (FPC).

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalog pages.

An optional interface board with suitable connector is also available on request.

Output circuit

Output signals
with clockwise rotation as seen
from the shaft end

Rotation

Dimensional drawing A

PA2-100

Dimensional drawing B

PA2-100

Interface Board PA2-100
for Motion Controller MCDC 3002 S
Part. No.: 6501.00144

Connection

Pin	Connection X1	Pin	Connection X3
1	4. In	1	5. In
2	Channel A	2	4. In
3	Channel B		
4	UDD $=5 \mathrm{~V}$	Pin	Connection X4
5	SGND	1	Motor +
6	Motor +	2	Motor +
7	Motor -	3	UDD $=3,3$ V
8	5. In	4	Channel A
Pin	Connection X2	5	Channel B
1	Motor +	6	SGND
2	UDD $=3,3$ V	7	Motor -
3	Channel A	8	Motor -
4	Channel B		
5	SGND		
6	Motor -		

Adapter board
\square ©

Connector

J1 - Molex 52745-0896
J2 - Phoenix 1725711

Encoders

magnetic Encoder, digital outputs, 2 channels, 16 lines per revolution

For combination with
DC-Micromotors

Series 1E2-16			
IE2-16			
Lines per revolution	N	16	
Frequency range, up to ${ }^{1)}$	f	7	kHz
Signal output, square wave		2	Channels
Supply voltage	UDD	$4 . .18$	V
Current consumption, typical ${ }^{2)}$	IDD	typ. 6, max. 12	mA
Output current, max. ${ }^{3)}$	lout	15	mA
Phase shift, channel A to B	Φ	90 ± 45	${ }^{\circ} \mathrm{e}$
Signal rise/fall time, max. ($\mathrm{ClOAD}^{\text {l }} 100 \mathrm{pF}$)	$t r / t f$	2,5 / 0,3	$\mu \mathrm{s}$
Inertia of code disc	J	0,11	gcm^{2}
Operating temperature range		$-25 \ldots+85$	${ }^{\circ} \mathrm{C}$

1) Velocity $\left(\mathrm{min}^{-1}\right)=f(\mathrm{~Hz}) \times 60 / \mathrm{N}$
2) $U_{D D}=5 \mathrm{~V}$: with unloaded outputs
${ }^{3)}$ Tested at 2 kHz

For combination with Motor				
Dimensional drawing A	<L1 [mm]	Dimensional drawing C	<L1 [mm]	
$1336 \ldots$ CXR -123	47,5	$1727 \ldots$ CXR -123	38,2	
		$1741 \ldots$ CXR -123		
Dimensional drawing B	18,2			
$1516 \ldots$ SR	26,2			
$1524 \ldots$ SR	19,4			
$1717 \ldots$ SR	26,4			
$1724 \ldots$ SR	26,6			
$2224 \ldots$ SR	34,6			
$2232 \ldots$ SR				

Characteristics

These incremental shaft encoders in combination with the FAULHABER The supply voltage for the encoder and the DC-Micromotor as well as DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning. the two channel output signals are interfaced through a ribbon cable with connector.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only $1,4 \mathrm{~mm}$!

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Solid state Hall sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

Output circuit

* An additional external pull-up resistor can be added to improve the rise time. Caution: $I_{\text {out }}$ max. 15 mA must not be exceeded!

Output signals
with clockwise rotation as seen
from the shaft end

Rotation

Admissible deviation of phase shift:

$$
\Delta \Phi=\left|90^{\circ}-\frac{\Phi}{P} * 180^{\circ}\right| \leq 45^{\circ}
$$

Connector information / Variants

No.	Function
1	Motor -
2	Motor +
3	GND
4	UDD
5	Channel B
6	Channel A

Connection Encoder

642
531

Cable

PVC-ribbon cable 6 -conductors, $0,09 \mathrm{~mm}^{2}$

Full product description

Example:
1336U012C-123 IE2-16
1516T006SR IE2-16
Connector
DIN-41651
grid 2,54 mm

Dimensional drawing A

IE2-16

Dimensional drawing B

IE2-16

FAULHABER

IE2-16

Adapter board

Interface Board IE2-16
for Motion Controller MCDC 3002 S
Part. No.: 6501.00143

Connection

Pin	Connection X1	Pin	Connection X3
1	5. In	1	Motor -
2	4. In	2	Motor +
Pin	Connection X2		
1	4. In	1	Motor -
2	Channel A	2	Motor +
3	Channel B	3	SGND
4	UDD	4	UDD
5	SGND	5	Channel B
6	Motor +	6	Channel A
7	Motor -		
8	5. In		

Encoders

magnetic Encoder, digital outputs, 2 channels, 50-400 lines per revolution

For combination with
DC-Micromotors

Series 1E2-400						
		IE2-50	IE2-100	IE2-200	IE2-4	
Lines per revolution	N	50	100	200	400	
Frequency range, up to ${ }^{1)}$	f	20	40	80	160	kHz
Signal output, square wave		2				Channels
Supply voltage	UDD	4,5 ... 5,5				V
Current consumption, typical ${ }^{2 /}$	IDD	typ. 9,5, max. 13				mA
Output current, max. ${ }^{\text {3) }}$	lout	5				mA
Phase shift, channel A to B	Φ	90 ± 45				${ }^{\circ} \mathrm{e}$
Signal rise/fall time, max. ($\mathrm{ClOAD}^{\text {a }} 50 \mathrm{pF}$)	$t r / t f$	0,1/0,1				$\mu \mathrm{s}$
Inertia of code disc	J	0,05				$\mathrm{gcm}{ }^{2}$
Operating temperature range		$-25 \ldots+85$				${ }^{\circ} \mathrm{C}$

${ }^{1)}$ Velocity $\left(\min ^{-1}\right)=f(\mathrm{~Hz}) \times 60 / \mathrm{N}$
2) $U_{D D}=5 \mathrm{~V}$: with unloaded outputs
${ }^{3)} U_{D D}=5 \mathrm{~V}$: low logic level $<0,5 \mathrm{~V}$, high logic level $>4,5 \mathrm{~V}$: CMOS- and TTL compatible

For combination with			
Dimensional drawing A	<L1 [mm]		
1319 ... SR	21,9		
1331 ... SR	33,9		
		(

Characteristics

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only $1,7 \mathrm{~mm}$!
Hybrid circuits with sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Output circuit

Output signals

with clockwise rotation as seen
from the shaft end

Admissible deviation of phase shift:

$$
\Delta \Phi=\left|90^{\circ}-\frac{\Phi}{P} * 180^{\circ}\right| \leq 45^{\circ}
$$

Connector information / Variants

No.	Function
1	Motor - *
2	Motor + *
3	GND
4	UDD
5	Channel B
6	Channel A

*Note: The terminal resistance of all motors with precious metal commutation is increased metal commutation is increased by approx. 0.4Ω, and the max
allowable motor current in combination is 1 A , depending on the motor can also be lower.

Dimensional drawing A

IE2-400

Encoders

magnetic Encoder, digital outputs,
For combination with 2 channels, 64-1024 lines per revolution

DC-Micromotors
Brushless DC-Motors

Series \|E2-1024							
		IE2-64	IE2-128	IE2-256	IE2-512	IE2-10	
Lines per revolution	N	64	128	256	512	1024	
Frequency range, up to ${ }^{1)}$	f	20	40	80	160	300	kHz
Signal output, square wave		2					Channels
Supply voltage	UDD	4,5 ... 5					V
Current consumption, typical ${ }^{2 /}$	IDD	typ. 9,					mA
Output current, max. ${ }^{3}$	lout	5					mA
Phase shift, channel A to B	Φ	90 ± 45					${ }^{\circ} \mathrm{e}$
Signal rise/fall time, max. ($\left.\mathrm{ClOAD}^{\text {l }} 50 \mathrm{pF}\right)$	$t r / t f$	0,1/0,					$\mu \mathrm{s}$
Inertia of code disc ${ }^{4}$	J	0,09					$\mathrm{gcm}{ }^{2}$
Operating temperature range		-25 ...					${ }^{\circ} \mathrm{C}$

${ }^{1)}$ Velocity $\left(\mathrm{min}^{-1}\right)=f(\mathrm{~Hz}) \times 60 / \mathrm{N}$
2) $U_{D D}=5 \mathrm{~V}$: with unloaded outputs
${ }^{3)} U_{D D}=5 \mathrm{~V}$: low logic level $<0,5 \mathrm{~V}$, high logic level $>4,5 \mathrm{~V}$: CMOS- and TTL compatible
${ }^{4)}$ For the brushless DC-Servomotors the inertia of code disc is: $J=0,14 \mathrm{gcm}^{2}$

For combination with Motor				
Dimensional drawing A	<L1 [mm]	Dimensional drawing C	<L1 [mm]	
1336 ... CXR - 123	47,5	1727 ... CXR - 123	38,2	
		1741 ... CXR - 123	52,2	
Dimensional drawing B	<L1 [mm]			
1516 ... SR	18,2	Dimensional drawing D	<L1 [mm]	
1524 ... SR	26,2	1628 ... B - K313	38,8	
1717 ... SR	19,4	2036 ... B-K313	46,8	
1724 ... SR	26,4	2057 ... B-K313	68,3	
2224 ... SR	26,6	2057 ... BHS - K313	68,3	
2232 ... SR	34,6			

Characteristics

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors and Brushless DC-Servomotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only $1,4 \mathrm{~mm}$. Built-on option for DC-Micromotors and Brushless DC-Servomotors.

Hybrid circuits with sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

Circuit diagram / Output signals

Output circuit

Output signals

with clockwise rotation as seen
from the shaft end

Admissible deviation of phase shift ${ }^{\text {: }}$

$$
\Delta \Phi=\left|90^{\circ}-\frac{\Phi}{P} * 180^{\circ}\right| \leq 45^{\circ}
$$

Connector information / Variants

No.	Function
1	Motor - *
2	Motor + *
3	GND
4	UDD
5	Channel B
6	Channel A

*Note: The terminal resistance of all motors with precious of all motors with precious
metal commutation is increased metal commutation is increased
by approx. 0.4Ω, and the max. by approx. 0.4Ω, and the max
allowable motor current in combination is 1 A , depending combination is 1 A , depending
on the motor can also be lower. Motors with graphite comMotors with graphite com-
mutation have separate motor mutation have separate motor is allowed.

Connection Encoder

Cable
PVC-ribbon cable 6 -conductors, $0,09 \mathrm{~mm}^{2}$

Connector

DIN-41651
grid $2,54 \mathrm{~mm}$

Dimensional drawing A

Dimensional drawing B

Full product description
Example:
1336U012C-123 IE2-1024
1516T006SR IE2-256

E2-1024

FAULHABER

IE2-1024
Dimensional drawing D

Adapter board

Interface Board IE2-1024
for Motion Controller MCDC 3002 S
Part. No.: 6501.00143

Connection			
Pin	Connection X1	Pin	Connection X3
1	5. In	1	Motor -
2	4. In	2	Motor +
Pin	Connection X2	Pin	Connection X4
1	4. In	1	Motor -
2	Channel A	2	Motor +
3	Channel B	3	SGND
4	Udo	4	UDD
5	SGND	5	Channel B
6	Motor +	6	Channel A
7	Motor -		
8	5. In		

FAULHABER

Encoders

magnetic Encoder, digital outputs, 2 channels, 16-4096 lines per revolution

For combination with
DC-Micromotors

Series IEH2-4096

	IEH2	-16	- 32	-64	-128	-256	-512	- 1024	-2048	-4096	
Lines per revolution	N	16	32	64	128	256	512	1024	2048	4096	
Frequency range, up to ${ }^{1)}$	f	5	10	20	40	80	160	320	640	875	kHz
Signal output, square wave		2									Channels
Supply voltage	$U_{\text {D }}$	4,5 ... 5,5									V
Current consumption, typical ${ }^{2 /}$	IDD	typ. 15, max. 25									mA
Output current, max. ${ }^{\text {3) }}$	lout	2,5									mA
Phase shift, channel A to B ${ }^{\text {4) }}$	Φ										${ }^{\circ} \mathrm{e}$
Signal rise/fall time, max. ($\mathrm{ClOAD}^{\text {a }} 50 \mathrm{pF}$)	tr/tf	0,05 / 0,05									$\mu \mathrm{s}$
Inertia of code disc	J	0,11									$\mathrm{gcm}{ }^{2}$
Operating temperature range		-40 ... +100									${ }^{\circ} \mathrm{C}$

1) Velocity $\left(\mathrm{min}^{-1}\right)=f(\mathrm{~Hz}) \times 60 / \mathrm{N}$
2) $U_{D D}=5 \mathrm{~V}$: with unloaded outputs
3) $U_{D D}=5 \mathrm{~V}$: low logic level $<0,4 \mathrm{~V}$, high logic level $>4,6 \mathrm{~V}$: CMOS- and TTL compatible
${ }^{4)}$ At $5000 \mathrm{~min}^{-1}$

| For combination with Motor | | | |
| :--- | ---: | :--- | :--- | :--- |
| Dimensional drawing A | LL1 $[\mathrm{mm}]$ | | |
| $1516 \ldots$ SR | 18,2 | | |
| $1524 \ldots$ SR | 26,2 | | |
| $1717 \ldots$ SR | 19,4 | | |
| $1724 \ldots$ SR | 26,4 | | |
| $2224 \ldots$ SR | 26,6 | | |
| $2232 \ldots$ SR | 34,6 | | |
| | | | |
| | | | |
| | | | |

Characteristics

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only $1,4 \mathrm{~mm}$.

A segmented magnetic disc provides a magnetic field which is detected and further processed by a single chip angle sensor. The output signals of both channels consist of a square wave signal with 90° phase shift and up to 4096 impulses per motor revolution.

The encoder is available with different standard resolutions. The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Output circuit

Output signals
with clockwise rotation as seen
from the shaft end

Admissible deviation of phase shift:

$$
\Delta \Phi=\left|90^{\circ}-\frac{\Phi}{\mathrm{P}} * 180^{\circ}\right| \leq \text { see above }
$$

Connector information / Variants

No.	Function
1	Motor -
2	Motor +
3	GND
4	UDD
5	Channel B
6	Channel A

Connection Encoder

642
531

Cable

PVC-ribbon cable 6 -conductors, $0,09 \mathrm{~mm}^{2}$

Full product description

Example:
1516T006SR IEH2-256

Connector

DIN-41651
grid 2,54 mm

Dimensional drawing A

IEH2-4096

FAULHABER

Encoders

optical Encoder, digital outputs,
For combination with 2 channels, 120 lines per revolution

Stepper Motors

Series PE22-120			
PE22-120			
Lines per revolution	N	120	
Frequency range, up to ${ }^{1)}$	f	30	kHz
Signal output, square wave		2	Channels
Supply voltage	UDD	4,5 ... 5,5	V
Current consumption, typical ${ }^{2 /}$	IDD	20	mA
Pulse width	P	180 ± 45	${ }^{\circ} \mathrm{e}$
Phase shift, channel A to B	Φ	90 ± 45	${ }^{\circ} \mathrm{e}$
Logic state width	5	90 ± 45	${ }^{\circ} \mathrm{e}$
Cycle	C	360 ± 30	${ }^{\circ} \mathrm{e}$
Signal rise/fall time, max. (Cload $^{\text {a }} \mathrm{pF}$)	$t r / t f$	0,5/0,1	$\mu \mathrm{s}$
Inertia of code disc	J	0,24	gcm^{2}
Operating temperature range		$-20 \ldots+85$	${ }^{\circ} \mathrm{C}$

1) Velocity $\left(\mathrm{min}^{-1}\right)=f(\mathrm{~Hz}) \times 60 / \mathrm{N}$
${ }^{\text {2) }} U_{D D}=5 \mathrm{~V}$: with unloaded outputs

| For combination with Motor | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Dimensional drawing A | $<L \mathbf{m m}]$ | | |
| AM2224-ww-ee | 38,0 | | |
| AM2224-R3-ww-ee | 40,9 | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

Characteristics

These incremental shaft encoders in combination with two phases stepper motors are designed for indication and control of both, shaft velocity and direction of rotation as well as for position verification.

The encoder is integrated in the Stepper Motors and extends the overall length by only 11 mm .

The supply voltage for the encoder and the stepper motors as well as the two channel output signals are interfaced through a ribbon cable with connector.

Details for the stepper motors and suitable reduction gearheads are on the corresponding data sheets.

Output circuit

Recommendation:
Please use a latch to capture the outputs.

Output signals
with clockwise rotation as seen from the shaft end

FAULHABER

Connector information / Variants

No.	Function
1	Motor Phase A +
2	Motor Phase A -
3	Motor Phase B +
4	Motor Phase B -
5	UdDENC
6	GND
7	Channel A
8	Channel B
9	N.C.
10	N.C.

Connection Encoder

 and Motor

Connector

Serie 71600-010LF PVC-ribbon cable

Full product description
Example:
AM2224-AV-18-16 PE22-120
AM2224-R3-V-12-75-86 PE22-120

Dimensional drawing A

Encoders

optical Encoder, digital outputs,
For combination with 2 channels, 100-500 lines per revolution

Series HEDS 5500

		HEDS 5500 C	HEDS 5500 A	
Lines per revolution	N	100	500	
Frequency range, up to ${ }^{1)}$	f	100	100	kHz
Signal output, square wave		2		Channels
Supply voltage	UDD	4,5 ... 5,5		V
Current consumption, typical ${ }^{2)}$	IDD	17		mA
Pulse width	P	180 ± 45		${ }^{\circ} \mathrm{e}$
Phase shift, channel A to B	Φ	90 ± 20		${ }^{\circ} \mathrm{e}$
Logic state width	5	90 ± 45		${ }^{\circ} \mathrm{e}$
Cycle	C	$360 \pm 5,5$		${ }^{\circ} \mathrm{e}$
Signal rise/fall time, max. ($\mathrm{ClOAD}^{\text {a }} \mathrm{pF}$)	$t r / t f$	0,25 / 0,25		$\mu \mathrm{s}$
Inertia of code disc	J	0,6		$\mathrm{gcm}{ }^{2}$
Operating temperature range		-40 ... +100		${ }^{\circ} \mathrm{C}$

1) Velocity $\left(\mathrm{min}^{-1}\right)=f(\mathrm{~Hz}) \times 60 / \mathrm{N}$
2) $U_{D D}=5 \mathrm{~V}$: with unloaded outputs

Dimensional drawing A	<L1 [mm]	3863 ... CR	86,1
2230 ... S	52,8	3890 ... CR	112,1
2233 ... S	55,6	2036 ... B - K312	56,8
2342 ... CR	63,8	2057 ... B - K312	75,8
2642 ... CXR	64,8	2057 ... BHS - K312	75,8
2642 ... CR	64,8	2444 ... B - K312	64,9
2657 ... CXR	79,8	3056 ... B - K312	76,1
2657 ... CR	79,8	3274 ... BP4	94,0
2668 ... CR	90,8	3564 ... В - K312	84,1
3242 ... CR	65,3	4490 ... B - K312	116,3
3257 ... CR	80,3	4490 ... BS - K312	116,3
3272 ... CR	95,3		

Characteristics

These incremental shaft encoders in combination with the DC-Motors are designed for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

A LED source and lens system transmits collimated light through a low inertia metal disc to give two channels with 90° phase shift. The single 5 volt supply and the two or three channel digital output signals are interfaced with a 5-pin connector.

Motors with ball bearings are recommended for continuous operation at low and high speeds and for elevated radial shaft load.

Details for the Motors and suitable reduction gearheads are on separate catalogue pages.

Output circuit

Output signals
with clockwise rotation as seen
from the shaft end

Rotation

FAULHABER

Connection information

No.	Function
1	GND
2	N.C.
3	Channel A
4	UDD
5	Channel B

Connection Encoder

 Recommended connector
 AMP 103686-4/640442-5,
 Molex 2695/2759
 FCl 65039-032/4825x-000
 Option
 HEDS 5500 Interlocking connector, extension cables 300 mm length (Part No.: K798)
 Full product description
 Example:
 2444S024B K312 HEDS5500C
 3863H048CR HEDS5500A

Dimensional drawing A

HEDS 5500

Encoders

optical Encoder, digital outputs,
For combination with 2 channels, 1000-1024 lines per revolution

DC-Micromotors

Brushless DC-Motors

Series HEDM 5500

		HEDM 5500 B	HEDM 5500 J	
Lines per revolution	N	1000	1024	
Frequency range, up to ${ }^{1)}$	f	100	100	kHz
Signal output, square wave		2		Channels
Supply voltage	UDD	4,5 ... 5,5		V
Current consumption, typical ${ }^{2)}$	IDD	57		mA
Pulse width	P	180 ± 45		${ }^{\circ} \mathrm{e}$
Phase shift, channel A to B	Φ	90 ± 15		${ }^{\circ} \mathrm{e}$
Logic state width	S	90 ± 45		${ }^{\circ} \mathrm{e}$
Cycle	C	$360 \pm 7,5$		${ }^{\circ} \mathrm{e}$
Signal rise/fall time, max. ($\mathrm{ClOAD}^{\text {a }} \mathrm{pF}$)	trltf	0,25 / 0,25		$\mu \mathrm{s}$
Inertia of code disc	J	0,6		$\mathrm{gcm}{ }^{2}$
Operating temperature range		$-40 \ldots+70$		${ }^{\circ} \mathrm{C}$

1) Velocity $\left(\mathrm{min}^{-1}\right)=f(\mathrm{~Hz}) \times 60 / \mathrm{N}$
2) $U_{D D}=5 \mathrm{~V}$: with unloaded outputs

Dimensional drawing A	<L1 [mm]	3863 ... CR	86,1
2230 ... S	52,8	3890 ... CR	112,1
2233 ... S	55,6	2036 ... В - K312	56,8
2342 ... CR	63,8	2057 ... B-K312	75,8
2642 ... CXR	64,8	2057 ... BHS - K312	75,8
2642 ... CR	64,8	2444 ... В - K312	64,9
2657 ... CXR	79,8	3056 ... В - K312	76,1
2657 ... CR	79,8	3274 ... BP4	94,0
2668 ... CR	90,8	3564 ... В - K312	84,1
3242 ... CR	65,3	4490 ... B - K312	116,3
3257 ... CR	80,3	4490 ... BS - K312	116,3
3272 ... CR	95,3		

Characteristics

These incremental shaft encoders in combination with the DC-Motors are designed for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

A LED source and lens system transmits collimated light through a low inertia metal disc to give two channels with 90° phase shift. The single 5 volt supply and the two or three channel digital output signals are interfaced with a 5-pin connector.

Motors with ball bearings are recommended for continuous operation at low and high speeds and for elevated radial shaft load.

Details for the Motors and suitable reduction gearheads are on separate catalogue pages.

Output circuit

Output signals
with clockwise rotation as seen
from the shaft end

Rotation

FAULHABER

Connection information

No.	Function
1	GND
2	N.C.
3	Channel A
4	UDD
5	Channel B

Dimensional drawing A

HEDM 5500

