

optical Encoder, digital outputs, 2 channels, 50 lines per revolution

For combination with DC-Micromotors **Brushless DC-Motors**

Series PA2-50

		PA2-50	
Lines per revolution	Ν	50	
Frequency range, up to ¹⁾	f	35	kHz
Signal output, square wave		2	Channels
Supply voltage	UDD	2,7 3,3	V
Current consumption, typical ²⁾	IDD	8,5	mA
Output current, max.	Ιουτ	8	mA
Pulse width	Ρ	180 ± 50	°e
Phase shift, channel A to B	Φ	90 ± 45	°e
Logic state width	5	90 ± 50	°e
Cycle	С	360 ± 36	°e
Signal rise/fall time, max. (CLOAD = 25 pF)	tr/tf	0,3 / 0,1	μs
Inertia of code disc	J	0,02	gcm ²
Operating temperature range		-30 +85	°C

¹⁾ Velocity (min⁻¹) = f(Hz) x 60/N ²⁾ UDD= 3 V: with unloaded outputs

For combination with Motor	
For combination with Motor	
Dimensional drawing A	<l1 [mm]<="" td=""></l1>
0615 S - K1655	19,2
Dimensional drawing B	<l1 [mm]<="" td=""></l1>
0620 B - K1719	24,0
Dimensional drawing C	<l1 [mm]<="" td=""></l1>
0816 SR - K2565	24,0

Characteristics

These incremental shaft encoders in combination with the DC-Micromotors and Brushless DC-Servomotors are designed for both indication and control of both shaft velocity and direction of rotation as well as for positioning.

An all-in-one emitter and detector chip transmits and receives LED light reflected off a low inertia reflective disc providing two channels with 90° phase shift.

The supply voltage for the encoder and the Micromotor as well as the output signals are interfaced with a flexible printed circuit (FPC).

Details for the DC-Micromotors and Brushless DC-Servomotors and suitable reduction gearheads are on separate catalog pages.

An optional interface board with suitable connector is also available on request.

Circuit diagram / Output signals

Output circuit

Output signals with clockwise rotation as seen

from the shaft end

0615 ... S / 0620 ... B Channel B Leads channel A

0816 ... S

For notes on technical data and lifetime performance refer to "Technical Information". Edition 2016

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice.

Dimensional drawing A

For notes on technical data and lifetime performance refer to "Technical Information". Edition 2016

Encoder connector

Motor connector

L1 ±0,35

PA2-50

2x **0,3** ±0,03

For notes on technical data and lifetime performance refer to "Technical Information". Edition 2016

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice.

optical Encoder, digital outputs, 2 channels, 100 lines per revolution

For combination with DC-Micromotors

Series PA2-100

		PA2-100	
Lines per revolution	N	100	
Frequency range, up to ¹⁾	f	35	kHz
Signal output, square wave		2	Channels
Supply voltage	UDD	2,7 3,3	V
Current consumption, typical ²⁾	IDD	8	mA
Pulse width	Ρ	180 ± 45	°e
Phase shift, channel A to B	Φ	90 ± 45	°e
Logic state width	5	90 ± 45	°e
Cycle	С	360 ± 30	°e
Signal rise/fall time, max. (CLOAD = 50 pF)	tr/tf	0,1 / 0,1	μs
Inertia of code disc	J	0,02	gcm²
Operating temperature range		-25 +85	°C

¹⁾ Velocity (min⁻¹) = f (Hz) x 60/N²⁾ UDD= 3 V: with unloaded outputs

For combination with Motor		
Dimensional drawing A	<l1 [mm]<="" td=""><td></td></l1>	
1016 G - K1752	23,5	
1024 S - K1752	31,5	
Dimensional drawing B	<l1 [mm]<="" td=""><td></td></l1>	
1224 SR - K1752	31,1	

Characteristics

These incremental shaft encoders in combination with the DC-Micromotors are designed for both indication and control of both shaft velocity and direction of rotation as well as for positioning.

An all-in-one emitter and detector chip transmits and receives LED light reflected off a low inertia reflective disc providing two channels with 90° phase shift.

The supply voltage for the encoder and the Micromotor as well as the output signals are interfaced with a flexible printed circuit (FPC).

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalog pages.

An optional interface board with suitable connector is also available on request.

Circuit diagram / Output signals

Output circuit

Output signals with clockwise rotation as seen from the shaft end

Rotation

Dimensional drawing A

PA2-100

Dimensional drawing B

PA2-100

For notes on technical data and lifetime performance refer to "Technical Information". Edition 2016

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice.

Adapter board

Interface Board PA2-100 for Motion Controller MCDC 3002 S Part. No.: 6501.00144

Coni	nection	
Pin	Connection X1	Pin
1	4. In	1
2	Channel A	2
3	Channel B	
4	$U_{DD} = 5V$	Pin
5	SGND	1
6	Motor +	2
7	Motor -	3
8	5. In	4
		5
Pin	Connection X2	6
1	Motor +	7
2	UDD = 3,3V	8
3	Channel A	
4	Channel B	
5	SGND	
6	Motor -	

Connection X4 Motor + Uob = 3,3V Channel A Channel B SGND Motor -Motor -

Connection X3

5. In

4. In

Adapter board

Interface board PA2-100 Part No.: D100308900

Connector J1 - Molex 52745-0896 J2 - Phoenix 1725711

magnetic Encoder, digital outputs, 2 channels, 16 lines per revolution

For combination with DC-Micromotors

Series IE2-16

		IE2-16	
Lines per revolution	Ν	16	
Frequency range, up to ¹⁾	f	7	kHz
Signal output, square wave		2	Channels
Supply voltage	UDD	4 18	V
Current consumption, typical ²⁾	IDD	typ. 6, max. 12	mA
Output current, max. ³⁾	Ιουτ	15	mA
Phase shift, channel A to B	Φ	90 ± 45	°e
Signal rise/fall time, max. (CLOAD = 100 pF)	tr/tf	2,5 / 0,3	μs
Inertia of code disc	J	0,11	gcm ²
Operating temperature range		-25 +85	°C

¹⁾ Velocity (min⁻¹) = $f(Hz) \ge 60/N$

²⁾ U_{DD} = 5 V: with unloaded outputs ³⁾ Tested at 2 kHz

For combination with M	otor		
Dimensional drawing A	<l1 [mm]<="" td=""><td>Dimensional drawing C</td><td><l1 [mm]<="" td=""></l1></td></l1>	Dimensional drawing C	<l1 [mm]<="" td=""></l1>
1336 CXR - 123	47,5	1727 CXR - 123	38,2
		1741 CXR - 123	52,2
Dimensional drawing B	<l1 [mm]<="" td=""><td></td><td></td></l1>		
1516 SR	18,2		
1524 SR	26,2		
1717 SR	19,4		
1724 SR	26,4		
2224 SR	26,6		
2232 SR	34,6		

Characteristics

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only 1,4 mm!

Solid state Hall sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Circuit diagram / Output signals

Output circuit

* An additional external pull-up resistor can be added to improve the rise time. Caution: I_{out} max. 15 mA must not be exceeded!

Admissible deviation of phase shift:

$$\Delta \Phi = \left| 90^{\circ} - \frac{\Phi}{P} * 180^{\circ} \right| \le 45^{\circ}$$

Connection Encoder 6,1 12,2

642 531

Cable PVC-ribbon cable 6-conductors, 0,09 mm²

Connector DIN-41651 grid 2,54 mm

Dimensional drawing A

For notes on technical data and lifetime performance refer to "Technical Information". Edition 2016

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice.

magnetic Encoder, digital outputs, 2 channels, 50 - 400 lines per revolution

For combination with DC-Micromotors

Series IE2-400

		IE2-50	IE2-100	IE2-200	IE2-400	
Lines per revolution	N	50	100	200	400	
Frequency range, up to ¹⁾	f	20	40	80	160	kHz
Signal output, square wave		2				Channels
Supply voltage	UDD	4,5 5,5				V
Current consumption, typical ²⁾	I DD	typ. 9,5, max. 13				mA
Output current, max. ³⁾	Ιουτ	5				mA
Phase shift, channel A to B	Φ	90 ± 45				°e
Signal rise/fall time, max. (CLOAD = 50 pF)	tr/tf	0,1/0,1				μs
Inertia of code disc	J	0,05				gcm ²
Operating temperature range		-25 +85				°C

¹⁾ Velocity (min⁻¹) = $f(Hz) \ge 60/N$

²⁾ $U_{DD} = 5$ V: with unloaded outputs ³⁾ $U_{DD} = 5$ V: low logic level < 0,5 V, high logic level > 4,5 V: CMOS- and TTL compatible

For combination with Moto	
For combination with Moto	r
Dimensional drawing A	<l1 [mm]<="" td=""></l1>
1319 SR	21,9
1331 SR	33,9
	· ·

Characteristics

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only 1,7 mm! Hybrid circuits with sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Circuit diagram / Output signals

Output signals

with clockwise rotation as seen from the shaft end

Admissible deviation of phase shift:

$$\Delta \Phi = \left| 90^{\circ} - \frac{\Phi}{P} * 180^{\circ} \right| \le 45^{\circ}$$

*Note: The terminal resistance of all motors with precious metal commutation is increased by approx. 0.4 Q, and the max. allowable motor current in combination is 1A, depending on the motor can also be lower. 6,1

12,2

Connection Encoder

Connector DIN-41651 grid 2,54 mm

Dimensional drawing A

magnetic Encoder, digital outputs, 2 channels, 64 - 1024 lines per revolution

For combination with DC-Micromotors **Brushless DC-Motors**

Series IE2-1024

		IE2-64	IE2-128	IE2-256	IE2-512	IE2-1024	
Lines per revolution	Ν	64	128	256	512	1 024	
Frequency range, up to ¹⁾	f	20	40	80	160	300	kHz
Signal output, square wave		2					Channels
Supply voltage	UDD	4,5 5,5					V
Current consumption, typical ²⁾	IDD	typ. 9,5, max.	13				mA
Output current, max. ³⁾	Ιουτ	5					mA
Phase shift, channel A to B	Φ	90 ± 45					°e
Signal rise/fall time, max. (CLOAD = 50 pF)	tr/tf	0,1/0,1					μs
Inertia of code disc ⁴⁾	J	0,09					gcm ²
Operating temperature range		-25 +85					°C

¹⁾ Velocity (min⁻¹) = f (Hz) x 60/N²⁾ U_{DD} = 5 V: with unloaded outputs

³⁾ U_{DD} = 5 V: low logic level < 0,5 V, high logic level > 4,5 V: CMOS- and TTL compatible

⁴⁾ For the brushless DC-Servomotors the inertia of code disc is: J = 0,14 gcm²

For combination with Moto	r		
Dimensional drawing A	<l1 [mm]<="" td=""><td>Dimensional drawing C</td><td><l1 [mm]<="" td=""></l1></td></l1>	Dimensional drawing C	<l1 [mm]<="" td=""></l1>
1336 CXR - 123	47,5	1727 CXR - 123	38,2
		1741 CXR - 123	52,2
Dimensional drawing B	<l1 [mm]<="" td=""><td></td><td></td></l1>		
1516 SR	18,2	Dimensional drawing D	<l1 [mm]<="" td=""></l1>
1524 SR	26,2	1628 B - K313	38,8
1717 SR	19,4	2036 B - K313	46,8
1724 SR	26,4	2057 B - K313	68,3
2224 SR	26,6	2057 BHS - K313	68,3
2232 SR	34,6		

Characteristics

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors and Brushless DC-Servomotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only 1,4 mm. Built-on option for DC-Micromotors and Brushless DC-Servomotors.

Hybrid circuits with sensors and a low inertia magnetic disc provide two channels with 90° phase shift.

The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Circuit diagram / Output signals

Output circuit

with clockwise rotation as seen from the shaft end

Admissible deviation of phase shift.

1 Motor - * 2 Motor + * 3 GND 4 Ubb 5 Channel B	No.	Function
2 Motor + * 3 GND 4 Upb 5 Channel B	1	Motor – *
3 GND 4 Upp 5 Channel B	2	Motor + *
4 UDD 5 Channel B	3	GND
5 Channel B	4	Udd
	5	Channel B
6 Channel A	6	Channel A

*Note: The terminal resistance of all motors with precious metal commutation is increased by approx. 0.4 Ω, and the max. allowable motor current in combination is 1A, depending on the motor can also be lower. Motors with graphite commutation have separate motor leads and higher motor current is allowed.

PVC-ribbon cable 6-conductors, 0,09 mm² Full product description

1336U012C-123 IE2-1024 1516T006SR IE2-256

Example:

Connector DIN-41651 grid 2,54 mm

Dimensional drawing B

13,3 150±10

For notes on technical data and lifetime performance refer to "Technical Information". Edition 2016

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice.

© DR. FRITZ FAULHABER GMBH & CO. KG Specifications subject to change without notice.

magnetic Encoder, digital outputs, 2 channels, 16 - 4096 lines per revolution

For combination with DC-Micromotors

Series IEH2-4096

	IEH2	- 16	- 32	- 64	- 128	- 256	- 512	- 1024	- 2048	- 4096	
Lines per revolution	Ν	16	32	64	128	256	512	1 024	2 048	4 096	
Frequency range, up to ¹⁾	f	5	10	20	40	80	160	320	640	875	kHz
Signal output, square wave		2									Channels
Supply voltage	UDD	4,5 5	,5								V
Current consumption, typical ²⁾	IDD	typ. 15	, max. 2	5							mA
Output current, max. ³⁾	Ιουτ	2,5									mA
Phase shift, channel A to B ⁴⁾	Φ	90 ± 45	;					90 ± 65	90 ± 75		°e
Signal rise/fall time, max. (CLOAD = 50 pF)	tr/tf	0,05/0	,05								μs
Inertia of code disc	J	0,11									gcm²
Operating temperature range		-40 +	-100								°C

¹⁾ Velocity (min⁻¹) = $f(Hz) \times 60/N$

²⁾ $U_{DD} = 5$ V: with unloaded outputs ³⁾ $U_{DD} = 5$ V: low logic level < 0,4 V, high logic level > 4,6 V: CMOS- and TTL compatible

⁴⁾ At 5 000 min⁻¹

For combination with Mo	tor
Dimensional drawing A	<l1 [mm]<="" td=""></l1>
1516 SR	18,2
1524 SR	26,2
1717 SR	19,4
1724 SR	26,4
2224 SR	26,6
2232 SR	34,6

Characteristics

These incremental shaft encoders in combination with the FAULHABER DC-Micromotors are used for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

The encoder is integrated in the DC-Micromotors SR-Series and extends the overall length by only 1,4 mm.

A segmented magnetic disc provides a magnetic field which is detected and further processed by a single chip angle sensor. The output signals of both channels consist of a square wave signal with 90° phase shift and up to 4096 impulses per motor revolution.

The encoder is available with different standard resolutions. The supply voltage for the encoder and the DC-Micromotor as well as the two channel output signals are interfaced through a ribbon cable with connector.

Details for the DC-Micromotors and suitable reduction gearheads are on separate catalogue pages.

Circuit diagram / Output signals

Output circuit

Admissible deviation of phase shift:

Connector DIN-41651 grid 2,54 mm Full product description
Example:

1516T006SR IEH2-256

Dimensional drawing A

optical Encoder, digital outputs, 2 channels, 120 lines per revolution

For combination with Stepper Motors

Series PE22-120

		PE22-120	
Lines per revolution	N	120	
Frequency range, up to ¹⁾	f	30	kHz
Signal output, square wave		2	Channels
Supply voltage	UDD	4,5 5,5	V
Current consumption, typical ²⁾	IDD	20	mA
Pulse width	Ρ	180 ± 45	°e
Phase shift, channel A to B	Φ	90 ± 45	°e
Logic state width	5	90 ± 45	°e
Cycle	С	360 ± 30	°e
Signal rise/fall time, max. (CLOAD = pF)	tr/tf	0,5 / 0,1	μs
Inertia of code disc	J	0,24	gcm²
Operating temperature range		-20 +85	°C

¹⁾ Velocity (min⁻¹) = $f(Hz) \ge 60/N$ ²⁾ $U_{DD} = 5$ V: with unloaded outputs

For combination with Motor

For combination with Motor	ſ	
Dimensional drawing A	<l1 [mm]<="" td=""><td></td></l1>	
AM2224-ww-ee	38,0	
AM2224-R3-ww-ee	40,9	
		•

Characteristics

These incremental shaft encoders in combination with two phases stepper motors are designed for indication and control of both, shaft velocity and direction of rotation as well as for position verification.

The encoder is integrated in the Stepper Motors and extends the overall length by only 11 mm.

The supply voltage for the encoder and the stepper motors as well as the two channel output signals are interfaced through a ribbon cable with connector. Details for the stepper motors and suitable reduction gearheads are on the corresponding data sheets.

Circuit diagram / Output signals

Output circuit

Recommendation: Please use a latch to capture the outputs.

No.	Function
1	Motor Phase A +
2	Motor Phase A –
3	Motor Phase B +
4	Motor Phase B –
5	UDD ENC
6	GND
7	Channel A
8	Channel B
9	N.C.
10	N.C.

Connection Encoder and Motor

9

1

Full product description
Example:

AM2224-AV-18-16 PE22-120 AM2224-R3-V-12-75-86 PE22-120

Dimensional drawing A

optical Encoder, digital outputs, 2 channels, 100 - 500 lines per revolution

For combination with DC-Micromotors **Brushless DC-Motors**

Series HEDS 5500

		HEDS 5500 C	HEDS 5500 A	
Lines per revolution	Ν	100	500	
Frequency range, up to ¹⁾	f	100	100	kHz
Signal output, square wave		2		Channels
Supply voltage	UDD	4,5 5,5		V
Current consumption, typical ²⁾	IDD	17		mA
Pulse width	Ρ	180 ± 45		°e
Phase shift, channel A to B	Φ	90 ± 20		°e
Logic state width	5	90 ± 45		°e
Cycle	С	360 ± 5,5		°e
Signal rise/fall time, max. (CLOAD = pF)	tr/tf	0,25 / 0,25		μs
Inertia of code disc	J	0,6		gcm²
Operating temperature range		-40 +100		°C

¹⁾ Velocity (min⁻¹) = $f(Hz) \ge 60/N$ ²⁾ $U_{DD} = 5$ V: with unloaded outputs

For combination with wotor				
Dimensional drawing A	<l1 [mm]<="" td=""><td>3863 CR</td><td>86,1</td><td></td></l1>	3863 CR	86,1	
2230 S	52,8	3890 CR	112,1	
2233 S	55,6	2036 B - K312	56,8	
2342 CR	63,8	2057 B - K312	75,8	
2642 CXR	64,8	2057 BHS - K312	75,8	
2642 CR	64,8	2444 B - K312	64,9	
2657 CXR	79,8	3056 B - K312	76,1	
2657 CR	79,8	3274 BP4	94,0	
2668 CR	90,8	3564 B - K312	84,1	
3242 CR	65,3	4490 B - K312	116,3	
3257 CR	80,3	4490 BS - K312	116,3	
3272 CR	95,3			

Characteristics

These incremental shaft encoders in combination with the DC-Motors are designed for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

A LED source and lens system transmits collimated light through a low inertia metal disc to give two channels with 90° phase shift. The single 5 volt supply and the two or three channel digital output signals are interfaced with a 5-pin connector.

Motors with ball bearings are recommended for continuous operation at low and high speeds and for elevated radial shaft load.

Details for the Motors and suitable reduction gearheads are on separate catalogue pages.

Circuit diagram / Output signals

Output signals with clockwise rotation as seen from the shaft end

Rotation

Connection information

optical Encoder, digital outputs, 2 channels, 1000 - 1024 lines per revolution

For combination with DC-Micromotors Brushless DC-Motors

Series HEDM 5500

		HEDM 5500 B	HEDM 5500 J	
Lines per revolution	Ν	1 000	1 024	
Frequency range, up to ¹⁾	f	100	100	kHz
Signal output, square wave		2		Channels
Supply voltage	UDD	4,5 5,5		V
Current consumption, typical ²⁾	IDD	57		mA
Pulse width	Ρ	180 ± 45		°e
Phase shift, channel A to B	Φ	90 ± 15		°e
Logic state width	5	90 ± 45		°e
Cycle	С	360 ± 7,5		°e
Signal rise/fall time, max. (CLOAD = pF)	tr/tf	0,25 / 0,25		μs
Inertia of code disc	J	0,6		gcm²
Operating temperature range		-40 +70		°C
_				

¹⁾ Velocity (min⁻¹) = $f(Hz) \times 60/N$

²⁾ $U_{DD} = 5$ V: with unloaded outputs

For combination with Motor

For combination with wotor				
Dimensional drawing A	<l1 [mm]<="" td=""><td>3863 CR</td><td>86,1</td><td></td></l1>	3863 CR	86,1	
2230 S	52,8	3890 CR	112,1	
2233 S	55,6	2036 B - K312	56,8	
2342 CR	63,8	2057 B - K312	75,8	
2642 CXR	64,8	2057 BHS - K312	75,8	
2642 CR	64,8	2444 B - K312	64,9	
2657 CXR	79,8	3056 B - K312	76,1	
2657 CR	79,8	3274 BP4	94,0	
2668 CR	90,8	3564 B - K312	84,1	
3242 CR	65,3	4490 B - K312	116,3	
3257 CR	80,3	4490 BS - K312	116,3	
3272 CR	95,3			

Characteristics

These incremental shaft encoders in combination with the DC-Motors are designed for the indication and control of both shaft velocity and direction of rotation as well as for positioning.

A LED source and lens system transmits collimated light through a low inertia metal disc to give two channels with 90° phase shift. The single 5 volt supply and the two or three channel digital output signals are interfaced with a 5-pin connector. Motors with ball bearings are recommended for continuous operation at low and high speeds and for elevated radial shaft load.

Details for the Motors and suitable reduction gearheads are on separate catalogue pages.

Circuit diagram / Output signals

Output signals with clockwise rotation as seen from the shaft end

Rotation

Connection information

