Encoders

magnetic absolute Encoder, SSI Interface, 4096 lines per revolution

For combination with
Brushless DC-Motors

Series AES-4096

AES-4096			
Lines per revolution	N	4096	
Resolution		12 Bit	
Signal output		Synchronous Serial Interface (SSI)	
Supply voltage	$U_{D D}$	4,5 .. 5,5	V
Current consumption, typical ${ }^{1)}$	IDD	typ. 16, max. 23	mA
Output current, max. (DATA) ${ }^{\text {2) }}$		4	mA
Clock Frequency, max. (CLK)		2	MHz
Input low level (CLK)		0 ... 0,8	V
Input high level (CLK)		2 ... UDD	V
Setup time after power on, max.	tsetup	4	ms
Timeout	$t_{\text {timeout }}$	16	$\mu \mathrm{s}$
Inertia of code disc	J	0,08	$\mathrm{gcm}{ }^{2}$
Operating temperature range		-40 ... +100	${ }^{\circ} \mathrm{C}$

1) $U_{D D}=5 \mathrm{~V}$: with unloaded outputs
${ }^{\text {2) }} U_{D D}=5 \mathrm{~V}$: low logic level $<0,4 \mathrm{~V}$, high logic level $>4,6 \mathrm{~V}$: CMOS- and TTL compatible

For combination with Motor			
Dimensional drawing A	$<L 1[m m]$		
$2232 \ldots$ BX4	50,2		
$2232 \ldots$ BX4 S	50,2		
$2250 \ldots$ BX4	68,2		
$2250 \ldots$ BX4 S	68,2		
Dimensional drawing B	$<L 1[\mathrm{~mm}]$		
$3242 \ldots$ BX4	60,0		
$3268 \ldots$ BX4	86,0		

Characteristics

The absolute encoder in combination with the Faulhaber motors is ideal for commutation, speed and position control. It can also be used to create a sinusoidal commutation signal.

In the AES version, absolute position information is provided with a resolution of up to 4096 steps per revolution at the signal outputs and communicated via a serial (SSI) interface. Absolute means, that each shaft position is assigned to a unique angular value within one revolution. This value is already available directly after power-on.

The advantages are a reduced torque ripple, a higher efficiency, and reduced electrical noise generation. When using sinusodial commutation.

Motor and encoder are connected via a common ribbon cable.

Output circuit

Interface signals (SSI)
Angle position values are ascending for clockwise rotation.
Clockwise rotation as seen from the shaft end.

No.	Function
1	Phase C
2	Phase B
3	Phase A
4	GND
5	UDD
6	CLK
7	N.C.
8	DATA

```
Connection Encoder and Motor
```



```
18
```


Option

Connector variants (Option no.: 3830) AWG 26 / PVC ribbon cable with connector MOLEX Microfit 3.0, 43025-0800, recommended mating connector 43020-0800

Full product description

Example: 3242G024BX4 AES-4096

Encoders

magnetic absolute Encoder, SSI Interface, 4096 lines per revolution

For combination with
Brushless DC-Motors

Series AESM-4096

AESM-4096			
Lines per revolution	N	4096	
Resolution		12 Bit	
Signal output		Synchronous Serial Interface (SSI)	
Supply voltage	UDD	4,5 ... 5,5	V
Current consumption, typical ${ }^{1)}$	IDD	typ. 16, max. 23	mA
Output current, max. (DATA) ${ }^{\text {2) }}$		4	mA
Clock Frequency, max. (CLK)		2	MHz
Input low level (CLK)		0 ... 0,8	V
Input high level (CLK)		2 ... UDD	V
Setup time after power on, max.	$t_{\text {setup }}$	4	ms
Timeout	$t_{\text {timeout }}$	16	$\mu \mathrm{s}$
Inertia of code disc	J	0,007	$\mathrm{gcm}{ }^{2}$
Operating temperature range		-30 ... +100	${ }^{\circ} \mathrm{C}$

1) $U_{D D}=5 \mathrm{~V}$: with unloaded outputs
${ }^{\text {2) }} U_{D D}=5 \mathrm{~V}$: low logic level $<0,4 \mathrm{~V}$, high logic level $>4,6 \mathrm{~V}$: CMOS- and TTL compatible

| For combination with Motor | | | |
| :--- | ---: | :--- | :--- | :--- |
| Dimensional drawing A | $<L 1[m \mathrm{~m}]$ | | |
| $0824 \ldots$ B | 24,1 | | |
| Dimensional drawing B | $<\mathrm{L1}[\mathrm{~mm}]$ | | |
| $1028 \ldots$ B | 28,1 | | |
| | | | |
| | | | |
| | | | |
| | | | |

Characteristics

The absolute encoder in combination with the FAULHABER motors is ideal for commutation, speed and position control. It can also be used to create a sinusoidal commutation signal.

In the AESM version, absolute position information is provided with a resolution of up to 4096 steps per revolution at the signal outputs and communicated via a serial (SSI) interface.
Absolute means, that each shaft position is assigned to a unique angular value within one revolution. This value is already available directly after power-on. The advantages are a reduced torque ripple, a higher efficiency, and reduced electrical noise generation.

When using sinusodial commutation. It is also especially suitable for slow speed regulation.

Motor and encoder are connected via a common flexboard.

Output circuit

Interface signals (SSI)
Angle position values are ascending for clockwise rotation.
Clockwise rotation as seen from the shaft end.

CLK

Connector information / Variants

No.	Function
1	Phase C
2	Phase B
3	Phase A
4	GND
5	UDD
6	CLK
7	N.C.
8	DATA

Caution:

Incorrect lead connection will damage the motor electronics!

Connection Encoder

 and Motor

Flexboard
8 circuits, $0,5 \mathrm{~mm}$ pitch

Recommended connector

 Top contact style 8 circuits, $0,5 \mathrm{~mm}$ pitch, e.g. Molex: 52745-0896/0897
Full product description

Examples:
0824K006B AESM-4096
1028S012B AESM-4096

Dimensional drawing A

AESM-4096

Dimensional drawing B

AESM-4096

